Heterogeneously catalysed hydrolytic decomposition of CFCs . How to deal with CFCs still deposited in refrigerators and foams

(Note: The full text of this document is currently only available in the PDF Version )

Kai-Uwe Niedersen, Elfriede Lieske and Erhard Kemnitz


Abstract

The hydrolytic decomposition of dichlorodifluoromethane (CFC-12) on modified zirconium oxide surfaces and on charcoal has been studied. The reaction was carried out under flow conditions at 450 °C. Complete CFC-12 conversion was obtained by employing a molar excess of water in the gas phase which depresses the formation of poisoning zirconium oxofluoride phases. These phases are responsible for the formation of unwanted monochlorodifluoromethane (CFC-13). The long-term stability of the catalysts was found to depend strongly on the CFC concentration in the gas phase. The lower the CFC concentration, the better the catalyst stability and catalytic activity. Pure charcoal can also be used as a catalyst for CFC hydrolysis. However, charcoal, owing to its reductive nature, may result in the formation of unwanted by-products and, thus, cannot be considered either as a serious catalyst nor as a suitable support.


References

  1. C. S. Kellner andV. N. M. RaoUS Patent, 4 873 381 1989 Search PubMed .
  2. L. E. Manzer and V. N. M. Rao, Adv. Catal., 1993, 39, 329 CAS .
  3. B. Coq, S. Hub, F. Figueras and D. Tournigant, Appl. Catal. A, 1993, 101, 41 CrossRef CAS .
  4. G. M. Bickle, T. Suzuki and Y. Mitarai, Appl. Catal. B, 1994, 4, 141 CrossRef CAS .
  5. B. Coq, F. Figueras, S. Hub and D. Tournigant, J. Phys. Chem., 1995, 99, 11159 CrossRef CAS .
  6. K. Early, V. I. Kovalchuk, F. Lonyi, S. Deshmukh and J. L. d'Itri, J. Catal., 1999, 182, 219 CrossRef CAS .
  7. E. R. Ritter, Combust Sci. Technol., 1994, 101, 171 CAS .
  8. S. K. Jo and J. M. White, Surf. Sci., 1991, 245, 305 CrossRef CAS .
  9. Y. Nagata, K. Hirai, K. Okitsu, T. Dohmaru and Y. Maeda, Chem. Lett., 1995, 203 CAS .
  10. A. Oku, K. Kimura and M. Sato, Ind. Eng. Chem. Res., 1989, 28, 1055 CrossRef CAS .
  11. A. J. Colussi and V. T. Amorebieta, J. Chem. Soc., Faraday Trans., 1987, 83, 3055 Search PubMed .
  12. S. Imamura, T. Shiomi, S. Ishida, K. Utani and H. Jindai, Ind. Eng. Chem. Res., 1990, 29, 758 .
  13. T. Aida, R. Higuchi and H. Niiyama, Chem. Lett., 1990, 2247 CAS .
  14. S. Immura, T. Higashihara and H. Jindai, Chem. Lett., 1993, 1667 .
  15. S. Imamura, H. Shimizu, T. Haga, S. Tsuji, K. Utani and M. Watanabe, Ind. Eng. Chem. Res., 1993, 32, 3146 CrossRef CAS .
  16. S. Imamura, T. Higashihara and K. Utani, Ind. Eng. Chem. Res., 1995, 34, 967 CrossRef CAS .
  17. S. Karmakar and H. L. Greene, J. Catal., 1995, 151, 394 CrossRef CAS .
  18. S. W. Park, J. H. Yoon and H. Lee, Korean J. Chem. Eng., 1996, 13, 640 Search PubMed .
  19. E. Kemnitz, A. Kohne and E. Lieske, J. Fluorine Chem., 1997, 81, 197 CrossRef .
  20. A. Hess and E. Kemnitz, Catal. Lett., 1998, 49, 199 CrossRef CAS .
  21. E. Kemnitz and D.-H. Menz, Prog. Solid State Chem., 1999, 26, 97 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.