Selective para-bromination of phenyl acetate . under the control of zeolites, bases, acetic anhydride or metal acetates in the liquid phase

(Note: The full text of this document is currently only available in the PDF Version )

Keith Smith, Ping He and Ashley Taylor


Abstract

HBr formed during the bromination of phenyl acetate has a major influence on the selectivity of the reaction. Sodium forms of zeolites X and Y increase the selectivity markedly by a process of cation exchange that removes this HBr. Removal of the HBr prevents formation of phenol and allows the bromination of PA to give almost exclusively the para isomer in quantitative yield. Bases, acetic anhydride and some metal acetates also improve the selectivity. These findings offer a variety of strategies for clean synthesis of para-bromophenyl acetate.


References

  1. Chemistry of Waste Minimisation, ed. J. H. Clark, Blackie Academic and Professional, Glasgow, 1995 Search PubMed.
  2. Electrophilic Aromatic Substitution, ed. R. Taylor, John Wiley and Sons, Chichester, 1990 Search PubMed.
  3. Solid Supports and Catalysts in Organic Synthesis, ed. K. Smith, Ellis Horwood, Chichester, 1992 Search PubMed.
  4. K. Smith, K. Fry, M. Butters and B. Nay, Tetrahedron Lett., 1989, 30, 5333 CrossRef; K. Smith, A. Musson and G. A. DeBoos, Chem. Commun., 1996, 469 RSC; J. Org. Chem., 1998, 63, 8448 Search PubMed.
  5. K. Smith, M. Butters and B. Nay, Synthesis, 1985, 1157 CrossRef CAS.
  6. K. Smith and D. Bahzad, Chem. Commun., 1996, 467 RSC.
  7. K. Smith, G. M. Ewart and K. R. Randles, J. Chem. Soc., Perkin Trans. 1, 1997, 1085 RSC.
  8. K. Smith and G. Pollaud, J. Chem. Soc., Perkin Trans. 1, 1994, 3519 RSC.
  9. T. M. Wortel, D. Oudijn, C. J. Vleugel, D. P. Roelofsen and H. Van Bekkum, J. Catal., 1979, 60, 110 CrossRef CAS.
  10. J. Van Dijk, J. J. Van Daalen and G. B. Paerels, Rec. Trav. Chim. Pays-Bas, 1974, 93, 72 CAS.
  11. Y. Higuchi and T. Suzuki, EP112722, 1984; Chem. Abstr., 1984, 101, 230115z Search PubMed.
  12. K. Sekizawa, T. Hironaka and Y. Tsutsumi, EP171256, 1986; Chem. Abstr., 1986, 104, 224678f Search PubMed.
  13. T. Miyake, K. Sekizawa, T. Hironaka and Y. Tsutsumi, US Pat., 4861929, 1989; Chem. Abstr., 1988, 109, 149038v Search PubMed.
  14. T. Suzuki and Y. Higuchi, US Pat., 4822933, 1989; Chem. Abstr., 1985, 102, 61913w Search PubMed.
  15. J. Dakka and Y. Sasson, J. Chem. Soc., Chem. Commun., 1987, 1421 RSC.
  16. F. Dela Vega, Y. Sasson and K. Huddersman, Zeolites, 1991, 11, 617; 1993, 13, 341.
  17. S. Rozen and M. Brand, J. Chem. Soc., Chem. Commun., 1987, 752 RSC.
  18. V. Robinson, M. Phil., thesis, University of Wales Swansea, 1995.
  19. T. Miyake, K. Sekizawa, T. Hironaka, M. Nakano, S. Fujii and Y. Tsutsumi, Stud. Surf. Sci. Catal., 1986, 28, 747 CAS.
  20. J. W. Ward, J. Catal., 1968, 11, 238 CAS.
  21. O. M. Dzhigit, A. V. Kiselev, K. N. Mikos, G. G. Muttik and T. A. Rahmanova, Trans. Faraday Soc., 1971, 67, 458 RSC.
  22. H. W. Habgood, Can. J. Chem., 1964, 42, 2340 CAS.
  23. E. C. Taylor, H. W. Altland, G. McGillivray and A. McKillop, Tetrahedron Lett., 1970, 5285 CrossRef CAS.
  24. A. McKillop, D. Bromley and E. C. Taylor, Tetrahedron Lett., 1969, 1623; J. Org. Chem., 1972, 37, 88 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.