Introductory Lecture: Inertia, coarsening and fluid motion in binary mixtures

(Note: The full text of this document is currently only available in the PDF Version )

M. E. Cates, V. M. Kendon, P. Bladon and J-C. Desplat


Abstract

Symmetric binary fluids, quenched into a regime of immiscibility, undergo phase separation by spinodal decomposition. In the late stages, the fluids are separated by sharply defined, but curved, interfaces: the resulting Laplace pressure drives fluid flow. Scaling ideas (of Siggia and of Furukawa) predict that, ultimately, this flow should become turbulent as inertial effects dominate over viscous ones. The physics here is complex: mesoscale simulation methods (such as lattice Boltzmann and dissipative particle dynamics) can play an essential role in its elucidation, as we describe. Likewise, it is a matter of experience that immiscible fluids will mix, on some lengthscale at least, if stirred vigorously enough. A scaling theory (of Doi and Ohta) predicts the dependence of a steady state domain size on shear rate, but assumes low Reynolds number (inertia is neglected). Our preliminary simulation results (three-dimensional, so far only on small systems) show little sign of the kind of steady state envisaged by Doi and Ohta; they raise instead the possibility of an oriented domain texture which can continue to coarsen until either inertial effects, or (in our simulations) finite size effects, come into play.


References

  1. A. J. Bray, Adv. Phys., 1994, 43, 357.
  2. See, e.g. K. Kubota, N. Kuwahara, H. Eda and M. Sakazume, Phys. Rev. A, 1992, 45, R3377 Search PubMed; S. H. Chen, D. Lombardo, F. Mallamace, N. Micali, S. Trusso and C. Vasi, Prog. Colloid Polym. Sci., 1993, 93, 331 CrossRef CAS; T. Hashimoto, H. Jinnai, H. Hasegawa and C. C. Han, Physica A, 1994, 204, 261 Search PubMed.
  3. A. J. Wagner and J. M. Yeomans, Phys. Rev. Lett., 1998, 80, 1429 CrossRef CAS.
  4. M. Grant and K. R. Elder, Phys. Rev. Lett., 1996, 82, 14 CrossRef.
  5. V. M. Kendon, J.-C. Desplat, P. Bladon and M. E. Cates, Phys. Rev. Lett., in press, cond-mat 9902346 Search PubMed.
  6. M. Doi and T. Ohta, J. Chem. Phys., 1991, 95, 1242 CrossRef CAS.
  7. M. R. Swift, E. Orlandini, W. R. Osborn and J. Yeomans, Phys. Rev. E, 1999, 54, 5041 CrossRef CAS.
  8. R. D. Groot and P. B. Warren, J. Chem. Phys., 1997, 107, 4423 CrossRef CAS.
  9. P. Bladon and J.-C. Desplat, in preparation.
  10. S. I. Jury, P. Bladon, S. Krishna and M. E. Cates, Phys. Rev. E., 1999, 59, R2535 CrossRef CAS.
  11. E. D. Siggia, Phys. Rev. A, 1979, 20, 595 CrossRef CAS.
  12. H. Furukawa, Adv. Phys., 1985, 34, 703 CAS.
  13. M. Laradji, S. Toxvaerd and O. G. Mouritsen, Phys. Rev. Lett., 1996, 77, 2253 CrossRef CAS.
  14. S. Bastea and J. L. Lebowitz, Phys. Rev. Lett., 1997, 78, 3499 CrossRef CAS.
  15. The linear law has been reported by a number of groups for which reliable parameter values are unavailable: T. Koga and K. Kawasaki, Phys. Rev. A, 1991, 44, R817 Search PubMed; S. Puri and B. Dünweg, Phys. Rev. A, 1992, 45, R6977 CrossRef CAS; F. J. Alexander, S. Chen and D. W. Grunau, Phys. Rev. B, 1993, 48, 634 CrossRef CAS linear fits were not offered by W. Ma, A. Maritan, J. R. Banavar and J. Koplik, Phys. Rev. A, 1992, 45, R5347 CrossRef CAS; A. Shinozaki and Y. Oono, Phys. Rev. Lett., 1991, 66, 173 Search PubMed although we believe these data to be at low Re C. Appert and S. Zaleski, Phys. Rev. Lett., 1990, 64, 1 CrossRef CAS claimed to see the inertial region, but we doubt this; see ref. 5.
  16. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, ed. J. Lumley, MIT Press, Cambridge, MA, 1975, vol. 2 Search PubMed.
  17. V. M. Kendon, J.-C. Desplat, P. Bladon and M. E. Cates, in preparation.
  18. S. I. Jury, P. Bladon, M. E. Cates, S. Krishna, M. Hagen, N. Ruddock and P. B. Warren, Phys. Chem. Chem. Phys., 1999, 1, 2051 RSC.
  19. Simulations in 3-D: T. Ohta, H. Nozaki and M. Doi, J. Chem. Phys., 1990, 93, 2664 Search PubMed; J. F. Olson and D. H. Rothman, J. Stat. Phys., 1995, 81, 199 CrossRef simulations in 2-D: P. Padilla and S. Toxvaerd, J. Chem. Phys., 1997, 106, 2342; F. Corberi, G. Gonella and A. Lamura, Phys. Rev. Lett., 1998, 81, 3852 Search PubMed.
  20. A. J. Wagner and J. M. Yeomans, Phys. Rev. E, 1999, 59, 4366 CrossRef CAS.
  21. R. G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, New York, 1999 Search PubMed.
  22. This is the main reason for the large wiggles; see also Y. Navot and M. Schwartz, Phys. Rev. Lett., 1997, 79, 4786 Search PubMed for a discussion of periodic breakup and reconnection of droplets.
  23. B. J. Ackerson and N. A. Clarke, Phys. Rev. A., 1984, 30, 906 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.