The interaction of highly vibrationally excited molecules with surfaces: vibrational relaxation and reaction of NO(v) at Cu(111) and O/Cu(111)

(Note: The full text of this document is currently only available in the PDF Version )

H. Hou, C. T. Rettner, D. J. Auerbach, Y. Huang, S. J. Gulding and A. M. Wodtke


Abstract

We have studied the reaction and inelastic scattering of ground and vibrationally excited NO on Cu(111). We employed laser-based techniques to prepare NO in vibrationally excited states, stimulated emission pumping (SEP) to prepare v=13 and v=15 and infrared overtone pumping to prepare v=2. Laser ionization detection schemes were developed for probing the state distribution of highly vibrationally excited NO molecules. Ground-state NO(v=0) dissociates at Cu(111) with a probability of ≈2×10-4, with little dependence on the translational energy in the range between 29 and 65 kJ mol-1. The dissociation probability is strongly enhanced by vibrational excitation to v=13 and 15. The dissociation continues until the oxygen coverage on Cu(111) reaches saturation. For highly excited NO(v=13, 15) scattering from O/Cu(111), we have seen efficient multi-quantum relaxation (up to Δv=-5). For NO(v=2), in contrast, the survival probability is nearly 90%. Measurements of the translational and rotational state distributions after scattering support a direct-inelastic mechanism for vibrational relaxation, with strong flow of energy into the surface. The branching ratios for vibrational relaxation are independent of the kinetic energy in our experiments.


References

  1. W. C. Polanyi and W. H. Wong, J. Chem. Phys., 1969, 51, 1439 CrossRef CAS.
  2. J. C. Polanyi, Acc. Chem. Res., 1972, 5, 161 CrossRef CAS.
  3. C. E. Hamilton, J. L. Kinsey and R. W. Field, Annu. Rev. Phys. Chem., 1986, 37, 493 CrossRef CAS.
  4. X. Yang and A. M. Wodtke, J. Chem. Phys., 1990, 92, 116 CrossRef CAS.
  5. F. F. Crim, Annu. Rev. Phys. Chem., 1993, 44, 397 CrossRef CAS.
  6. F. F. Crim, J. Phys. Chem., 1996, 100, 12725 CrossRef CAS.
  7. M. Asscher, W. L. Guthrie, T.-H. Lin and G. A. Somorjai, Phys. Rev. Lett., 1982, 49, 76 CrossRef CAS.
  8. D. A. Mantell, Y.-F. Maa, S. B. Ryali, G. L. Haller and J. B. Fenn, J. Chem. Phys., 1983, 78, 6338 CrossRef CAS.
  9. C. T. Rettner, F. Fabre, J. Kimman and D. J. Auerbach, Phys. Rev. Lett., 1985, 55, 1904 CrossRef CAS.
  10. B. D. Kay, T. D. Raymond and M. E. Coltrin, Phys. Rev. Lett., 1987, 59, 2792 CrossRef CAS.
  11. C. T. Rettner, D. J. Auerbach and H. A. Michelsen, Phys. Rev. Lett., 1992, 68, 2547 CrossRef CAS.
  12. A. Hodgson, P. Samson, A. Wight and C. Cottrel, Phys. Rev. Lett., 1997, 78, 963 CrossRef CAS.
  13. B. N. J. Persson and P. Avouris, Surf. Sci., 1997, 390, 45 CrossRef CAS.
  14. B. N. J. Persson and J. W. Gadzuk, Surf. Sci., 1998, 410, L779 CrossRef CAS.
  15. A. Sinha, J. D. Thoemke and F. Crim, J. Chem. Phys., 1992, 96, 372 CrossRef CAS.
  16. C. A. Rogaski, J. M. Price, J. A. Mack and A. M. Wodtke, Geophys. Res. Lett., 1993, 20, 2885 CrossRef CAS.
  17. R. L. Miller, A. G. Suits, P. L. Houston, R. Toumi, J. A. Mack and A. M. Wodtke, Science, 1994, 265, 1831 CrossRef CAS.
  18. D. W. Arnold, M. Korolik, C. Wittig and H. Reisler, Chem. Phys. Lett., 1998, 282, 313 CrossRef CAS.
  19. C. A. Michaels, A. S. Mullin, P. Jeunghee, J. Z. Chou and G. W. Flynn, J. Chem. Phys., 1988, 108, 2744 CrossRef CAS.
  20. C. T. Rettner, H. E. Pfnür, H. Stein and D. J. Auerbach, J. Vac. Sci. Technol., A, 1988, 6, 899 CrossRef CAS.
  21. M. Gostein and G. O. Sitz, J. Chem. Phys., 1997, 106, 7378 CrossRef CAS.
  22. H. Hou, Y. Huang, C. T. Rettner, S. J. Gulding, D. J. Auerbach and A. M. Wodtke, J. Chem. Phys., 1999, 110, 10660 CrossRef CAS.
  23. H. Hou, Y. Huang, C. T. Rettner, S. J. Gulding, D. J. Auerbach and A. M. Wodtke, Science, 1999, 284, 1647 CrossRef CAS.
  24. Y. Huang and M. Sulkes, Rev. Sci. Instrum., 1994, 65, 3969.
  25. The probe light was generated by doubling the output of a Λ-Physik FL3002 dye laser. The pump source of the dye laser was the third harmonic light (λ = 355 nm) of a Nd: YAG Laser (Continuum PowerLite 7010).
  26. The nomenclature for transition branches follow that described by Hertzberg.
  27. G. Herzberg, Spectra of Diatomic Molecules, Robert E. Krieger Publishing Co., Inc., 1989, vol. 1, pp. 259, 269 Search PubMed.
  28. The fundamental light from a Nd: YAG (Continuum PowerLite 8010s) was mixed with the output of a dye laser (Continuum ND 6000, I = 770 nm) in a Continuum IR-package with a LiNbO3 crystal. The dye laser was pumped by the second harmonic (λ = 532 nm) of the same Nd: YAG laser.
  29. M. H. Matloob and M. W. Roberts, Phys. Scr., 1977, 16, 420 Search PubMed; W. A. Brown, P. Gardner and D. A. King, J. Phys. Chem., 1995, 99, 7065 CrossRef CAS.
  30. F. H. P. M. Habraken, E. P. Kieffer and G. A. Bootsma, Surf. Sci., 1979, 83, 45 CrossRef CAS.
  31. J. A. Rodriguez and J. Hrbek, J. Vac. Sci. Technol., A, 1994, 12, 2140 CrossRef CAS.
  32. A. W. Kleyn, A. C. Luntz and D. J. Auerbach, Phys. Rev. Lett., 1981, 47, 1169 CrossRef CAS.
  33. A. C. Luntz, A. W. Kleyn and D. J. Auerbach, Phys. Rev. B: Condens. Matter, 1982, 25, 4273 CrossRef CAS.
  34. A. C. Luntz, A. W. Kleyn and D. J. Auerbach, Vacuum, 1983, 33, 781 CrossRef CAS.
  35. A. C. Luntz, A. W. Kleyn and D. J. Auerbach, J. Chem. Phys., 1982, 76, 737 CrossRef CAS.
  36. C. Amiot, J. Mol. Spectrosc., 1982, 94, 150 CrossRef CAS.
  37. R. Engleman Jr., P. E. Rouse, H. M. Peek and e. V. D. Baiamont, Beta and Gamma band systems of nitri coxide, Los Alamos Scientific Laboratory of the University of California, 1970, LA-4364, UC-34, Physics, TID-4500 Search PubMed.
  38. R. N. Zare, Angular Momentum: Understanding spatial aspects in chemistry and physics, Wiley-Interscience, New York, 1988 Search PubMed.
  39. P. M. Morse, Phys. Rev., 1929, 34, 57 CrossRef CAS.
  40. J. C. Tully and M. J. Cardillo, Science, 1984, 223, 445 CAS.
  41. B. E. Hayden and C. L. A. Lamont, Phys. Rev. Lett., 1989, 63, 1823 CrossRef CAS.
  42. G. Anger, A. Winkler and K. D. Rendulic, Surf. Sci., 1989, 220, 1 CrossRef CAS.
  43. J. Harris, Surf. Sci., 1989, 221, 335 CrossRef CAS.
  44. J. K. Nørskov, J. Chem. Phys., 1989, 90, 7461 CrossRef.
  45. S. Küchenhoff, W. Brenig and Y. Chiba, Surf. Sci., 1991, 245, 389 CrossRef.
  46. S. Holloway and G. Darling, Comments At. Mol. Phys., 1992, 27, 335 Search PubMed.
  47. C. T. Rettner, D. J. Auerbach and H. A. Michelsen, Phys. Rev. Lett., 1992, 68, 1164 CrossRef CAS.
  48. C. T. Rettner, F. Fabre, J. Kimman and D. J. Auerbach, Phys. Rev. Lett., 1985, 55, 1904 CrossRef CAS.
  49. S. Holloway and J. W. Gadzuk, J. Chem. Phys., 1985, 82, 5203 CrossRef CAS.
  50. D. Newns, Surf. Sci., 1985, 171, 600 CrossRef.
  51. W. Gadzuk and S. Holloway, Chem. Phys. Lett., 1985, 114, 314 CrossRef CAS.
  52. J. W. Gadzuk and S. Holloway, Phys. Rev. B: Condens. Matter, 1986, 33, 4298 CrossRef CAS.
  53. C. T. Rettner, J. Kimman, F. Fabre, D. J. Auerbach and H. Morawitz, Surf. Sci., 1987, 192, 107 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.