Introductory Lecture Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

Evan Evans


Abstract

Beyond covalent connections within protein and lipid molecules, weak noncovalent interactions between large molecules govern properties of cellular structure and interfacial adhesion in biology. These bonds and structures have limited lifetimes and so will fail under any level of force if pulled on for the right length of time. As such, the strength of interaction is the level of force most likely to disrupt a bond on a particular time scale. For instance, strength is zero on time scales longer than the natural lifetime for spontaneous dissociation. On the other hand, if driven to unbind or change structure on time scales shorter than needed for diffusive relaxation, strength will reach an adiabatic limit set by the maximum gradient in a potential of mean force. Over the enormous span of time scales between spontaneous dissociation and adiabatic detachment, theory predicts that bond breakage under steadily rising force occurs most frequently at a force determined by the rate of loading. Moreover, the continuous plot (spectrum) of strength expressed on a scale of loge(loading rate) provides a map of the prominent barriers traversed in the energy landscape along the force-driven pathway and reveals the differences in energy between barriers. Illustrated with results from recent laboratory measurements, dynamic strength spectra provide a new view into the inner complexity of receptor–ligand interactions and receptor lipid anchoring.


References

  1. G. Binnig, C. F. Quate and C. H. Gerber, Phys. Rev. Lett., 1986, 56, 930 CrossRef; B. Drake, C. B. Prater, A. L. Weisenhorn, S. A. C. Gould, T. R. Albrecht, C. F. Quate, D. S. Cannell, H. G. Hansma and P. K. Hansma, Science, 1989, 243, 1586 CrossRef CAS.
  2. H. Grubmuller, B. Heymann and P. Tavan, Science, 1996, 271, 997 CrossRef CAS; S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono and K. Schulten, Biophys. J., 1997, 72, 1568 CrossRef CAS.
  3. S.-J. Marrink, O. Berger, P. Tieleman and F. Jahnig, Biophys. J., 1998, 74, 931 CrossRef CAS.
  4. H. A. Kramers, Physica (Amsterdam), 1940, 7, 284 Search PubMed; P. Hanggi, P. Talkner and M. Borkovec, Rev. Mod. Phys., 1990, 62, 251 CrossRef.
  5. E. Evans and K. Ritchie, Biophys. J., 1997, 72, 1541 CrossRef CAS.
  6. R. Merkel, P. Nassoy, A. Leung, K. Ritchie and E. Evans, Nature (London), 1999, 397, 50 CrossRef CAS.
  7. S. Simon, A. Leung, D. Hammer and E. Evans, to be submitted.
  8. F. Ludwig and E. Evans, to be submitted.
  9. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986 Search PubMed; N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1981 Search PubMed.
  10. P. J. Rossky, J. D. Doll and H. L. Friedman, J. Chem. Phys., 1978, 69, 4628 CrossRef CAS.
  11. G. I. Bell, Science, 1978, 200, 618 CrossRef CAS.
  12. G. U. Lee, D. A. Kidwell and R. J. Colton, Langmuir, 1994, 10, 354 CrossRef CAS.
  13. E.-L. Florin, V. T. Moy and H. E. Gaub, Science, 1994, 264, 415 CrossRef CAS.
  14. V. T. Moy, E.-L. Florin and H. E. Gaub, Science, 1994, 264, 257.
  15. P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher and H. Schindler, Proc. Natl. Acad. Sci. USA, 1996, 93, 3477 CrossRef CAS.
  16. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung and C. M. Lieber, Nature (London), 1998, 394, 52 CrossRef CAS.
  17. S. P. Tha, J. Shuster and H. L. Goldsmith, Biophys. J., 1986, 50, 117.
  18. E. Evans, D. Berk and A. Leung, Biophys. J., 1991, 59, 838 CrossRef CAS.
  19. E. Evans, K. Ritchie and R. Merkel, Biophys. J., 1995, 68, 2580 CrossRef CAS.
  20. E. Evans and K. Ritchie, Biophys. J., 1999, in press Search PubMed.
  21. N. M. Green, Adv. Protein Chem., 1975, 29, 85 CAS.
  22. A. Chilkoti and P. S. Stayton, J. Am. Chem. Soc., 1995, 117, 10622 CrossRef CAS.
  23. R. Alon, D. A. Hammer and T. A. Springer, Nature (London), 1995, 374, 539 CAS; K. D. Puri, S. Chen and T. A. Springer, Nature (London), 1998, 392, 930 CrossRef CAS.
  24. P. C. Weber, D. H. Ohlendorf, J. J. Wendoloski and F. R. Salemme, Science, 1989, 243, 85 CrossRef CAS.
  25. O. Livnah, E. A. Bayer, M. Wilchek and J. L. Sussman, Proc. Natl. Acad. Sci. USA, 1993, 90, 5076 CAS.
  26. S. Freitag, I. Le Trong, L. Klumb, P. S. Stayton and R. E. Stenkamp, Protein Sci., 1997, 6, 1157 CrossRef CAS.
  27. V. Chu, S. Freitag, I. Le Trong, R. E. Stenkamp and P. S. Stayton, Protein Sci., 1998, 7, 848 CAS.
  28. D. Marsh, Handbook of Lipid Bilayers, CRC Press, Boca Raton, FL., 1990, p. 275–280 Search PubMed.
  29. C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, John Wiley and Sons, New York, NY, 1973 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.