Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface

(Note: The full text of this document is currently only available in the PDF Version )

Jean-Louis Barrat and Lyde′ric Bocquet


Abstract

It is well known that, at a macroscopic level, the boundary condition for a viscous fluid at a solid wall is one of “no-slip’'. The liquid velocity field vanishes at a fixed solid boundary. In this paper, we consider the special case of a liquid that partially wets the solid, i.e., a drop of liquid in equilibrium with its vapor on the solid substrate has a finite contact angle. Using extensive non-equilibrium molecular dynamics (NEMD) simulations, we show that when the contact angle is large enough, the boundary condition can drastically differ (at a microscopic level) from a “no-slip’' condition. Slipping lengths exceeding 30 molecular diameters are obtained for a contact angle of 140°, characteristic of mercury on glass. On the basis of a Kubo expression for δ, we derive an expression for the slipping length in terms of equilibrium quantities of the system. The predicted behaviour is in very good agreement with the numerical results for the slipping length obtained in the NEMD simulations. The existence of large slipping length may have important implications for the transport properties in nanoporous media under such “nonwetting’' conditions.


References

  1. J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London, 1985 Search PubMed.
  2. Dynamics in small confining systems, ed. J. M. Drake, J. Klafter and R. Kopelman, Materials Research Society, Pittsburgh, PA, 1996 Search PubMed.
  3. H. W. Hu, G. A. Carson and S. Granick, Phys. Rev. Lett., 1991, 66, 2758 CrossRef CAS.
  4. D. Y. C. Chan and R. G. Horn, J. Chem. Phys., 1985, 83, 5311 CrossRef CAS.
  5. J. Koplik, J. R. Benavar and J. F. Willemsen, Phys. Rev. Lett., 1988, 60, 1282 CrossRef.
  6. P. A. Thompson and M. O. Robbins, Phys. Rev. A. Gen. Phys., 1990, 41, 6830 CrossRef CAS.
  7. I. Bitsanis, S. A. Somers, H. T. Davis and M. Tirrell, J. Chem. Phys., 1990, 93, 3427 CrossRef CAS.
  8. L. Bocquet and J.-L. Barrat, Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., 1994, 49, 3079 CrossRef CAS; ibid, J. Phys.: Condens. Matter, 1996, 8, 9297 Search PubMed.
  9. C. J. Mundy, S. Balasubramanian, K. Bagchi, J. I. Siepmann and M. L. Klein, Faraday Discuss., 1996, 104, 17 RSC.
  10. K. Koplik and J. R. Banavar, Phys. Rev. Lett., 1998, 23, 5125 CrossRef.
  11. We mention that in some numerical simulations, purely repulsive interactions between the fluid and the substrate were considered. In that case, however, the pressure of the fluid is very high, and the properties of the confined are very similar to those obtained for a wetting fluid (with attractive interactions to the substrate) at a lower pressure.
  12. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Oxford University Press, Oxford, 1989 Search PubMed.
  13. M. Allen and D. Tildesley, Computer simulation of liquids, Oxford University Press, Oxford, 1987 Search PubMed.
  14. M. J. P. Nijmeijer, C. Bruin, A. F. Bakker and J. M. J. van Leeuwen, Phys. Rev. A: Gen. Phys, 1990, 42, 6052 CrossRef CAS.
  15. The contact angle of mercury on glass is typically 140°.
  16. L. Bocquet, C. R. Acad. Sci., Ser. II, 1993, 316, 7 Search PubMed.
  17. W. A. Steele, Surf. Sci., 1973, 36, 317 CrossRef CAS.
  18. P. G. de Gennes, Physica, 1959, 25, 825 Search PubMed.
  19. J. P. Boon and S. Yip, Molecular Hydrodynamics, Dover Publications, New York, 1980 Search PubMed.
  20. J. M. Georges, S. Millot, J.-L. Loubet and A. Tonck, J. Chem. Phys., 1993, 98, 7345 CrossRef CAS.
  21. N. V. Churaev, V. D. Sobolev and A. N. Somov, J. Colloid Interface Sci., 1984, 147, 574 CrossRef.
  22. T. D. Blake, Colloids Surf., 1990, 47, 135 CrossRef CAS and references cited therein.
  23. J. Bear, Dynamics of fluids in porous mediaElsevier, New York, 1972 Search PubMed.
  24. M. Arndt, R. Stannarius, W. Gorbatschow and F. Kremer, Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., 1996, 54, 5377 CrossRef CAS.
  25. S. J. Plimpton, J. Comput. Phys., 1995, 117, 1 CrossRef CAS code available at http://www.cs.sandia.gov/tech_reports/sjplimp.
Click here to see how this site uses Cookies. View our privacy policy here.