Model of the hydrophobic interaction

(Note: The full text of this document is currently only available in the PDF Version )

A. B. Kolomeisky and B. Widom


Abstract

The potential of mean force between interstitial solute molecules in Ben-Naim's one-dimensional, many-state lattice model (related to the one-dimensional q-state Potts model) is calculated. Since the model is exactly soluble, all results are explicit and analytic. It is found that the magnitude of the effective attractive force between solutes and the range of that attraction vary inversely with each other: the strength of the attraction, as expected, increases with increasing magnitude of the (entropically unfavorable) free energy of “hydrogen-bond’' formation, but at the same time the range decreases. Conversely, when the unfavourable entropy and favourable energy of “hydrogen-bond’' formation are nearly in balance, the attraction between hydrophobes, while then weak, is of very long range. It is remarked that solubility in a one-dimensional solution model, when the direct intermolecular interactions are of short range, can only be defined osmotically. The solubility of the hydrophobe, as so defined, is calculated with the present model. It is found to decrease with increasing temperature, as expected for a hydrophobic solute.


References

  1. A. Ben-Naim, Statistical Thermodynamics for Chemists and Biochemists, Plenum, New York, 1992, pp. 220–223 Search PubMed.
  2. F. Y. Wu, J. Appl. Phys., 1984, 55, 2421 CrossRef CAS.
  3. F. H. Stillinger, J. Solution Chem., 1973, 2, 141 CAS.
  4. J. C. Owicki and H. A. Scheraga, J. Am. Chem. Soc., 1977, 99, 7413 CrossRef CAS.
  5. L. R. Pratt and D. Chandler, J. Chem. Phys., 1977, 67, 3683 CrossRef CAS.
  6. B. Guillot and Y. Guissani, J. Chem. Phys., 1993, 99, 8075 CrossRef CAS.
  7. J. Forsman and B. Jönsson, J. Chem. Phys., 1994, 101, 5116 CrossRef CAS.
  8. M. E. Paulaitis, S. Garde and H. S. Ashbaugh, Curr. Opin. Colloid Interface Sci., 1996, 1, 376 CAS.
  9. M. Pellegrini, N. Grønbech-Jensen and S. Doniach, J. Chem. Phys., 1996, 104, 8639 CrossRef CAS.
  10. G. Hummer, S. Garde, A. E. García, A. Pohorille and L. R. Pratt, Proc. Natl. Acad. Sci. USA, 1996, 93, 8951 CrossRef CAS.
  11. S. Lüdemann, H. Schreiber, R. Abseher and O. Steinhauser, J. Chem. Phys., 1996, 104, 286 CrossRef.
  12. F. M. Floris, M. Selmi, A. Tani and J. Tomasi, J. Chem. Phys., 1997, 107, 6353 CrossRef CAS.
  13. N. A. M. Besseling and J. Lyklema, J. Phys. Chem. B, 1997, 101, 7604 CrossRef CAS.
  14. R. D. Mountain and D. Thirumalai, Proc. Natl. Acad. Sci. USA, 1998, 95, 8436 CrossRef CAS.
  15. K. A. T. Silverstein, A. D. J. Haymet and K. A. Dill, J. Am. Chem. Soc., 1998, 120, 3166 CrossRef CAS.
  16. K. Lum, D. Chandler and J. D. Weeks, J. Phys, Chem. B, 1999, 103, 4570 CrossRef CAS.
  17. B. Widom, J. Chem. Phys., 1963, 39, 2808 CrossRef CAS.
  18. C. Domb, Adv. Phys., 1960, 9, 149 CAS.
  19. G. R. Andersen and J. C. Wheeler, J. Chem. Phys., 1978, 69, 3403 CrossRef CAS.
  20. J. C. Wheeler, personal communication.
Click here to see how this site uses Cookies. View our privacy policy here.