A simple off-lattice model for microemulsions

(Note: The full text of this document is currently only available in the PDF Version )

V. Talanquer and David W. Oxtoby


Abstract

We have developed a simple off-lattice density functional theory and applied it to ternary water–oil–amphiphile mixtures. Our approach is based on mean field free energy functionals calculated from hard-sphere perturbation theory, to which is added a contribution arising from molecular association between the water-like and the amphiphilic species. This latter term is treated using the Wertheim theory for associating liquid mixtures, and it gives rise to a re-entrant binary phase diagram in a very natural way. The resulting ternary phase diagrams resemble experimental data both qualitatively and quantitatively. We also calculate the structure and free energy of interfaces between phases in this system, and show that the presence of amphiphile dramatically lowers the surface tension between the water-rich and oil-rich phases. This simple model contains many of the features of real microemulsion systems, and can be extended to study lamellar and other complex phases.


References

  1. For a general review of experiments on microemulsions and their applications see R. Strey, Colloid Polym. Sci., 1994, 272, 1005 Search PubMed and R. Strey, Curr. Opin. Colloid Interface Sci., 1996, 1, 402 CrossRef CAS.
  2. B. Widom, J. Chem. Phys., 1986, 84, 6943 CrossRef CAS.
  3. G. Gompper and M. Schick, in Phase Transitions and Critical Phenomena, ed. C. Domb and J. L. Lebowitz, Academic, New York, 1994, Vol. 16 Search PubMed.
  4. B. Smit, K. Esselink, P. A. J. Hilbers, N. M. van Os, L. A. M. Rupert and I. Szleifer, Langmuir, 1993, 9, 9 CrossRef CAS.
  5. M. M. Telo da Gama and K. E. Gubbins, Mol. Phys., 1986, 59, 227 CAS.
  6. C. Guerra, A. M. Somoza and M. M. Telo da Gama, J. Chem. Phys., 1998, 109, 1152 CrossRef CAS.
  7. V. Talanquer and D. W. Oxtoby, J. Chem. Phys., 1997, 106, 3673 CrossRef CAS.
  8. N. F. Carnahan and K. E. Starling, J. Chem. Phys., 1969, 51, 635 CrossRef CAS.
  9. G. Jackson, W. G. Chapman and K. E. Gubbins, Mol. Phys., 1988, 65, 1.
  10. J. K. Johnson and K. E. Gubbins, Mol. Phys., 1992, 77, 1033.
  11. J. M. Walsh and K. E. Gubbins, Mol. Phys., 1993, 80, 65 CAS.
  12. M. Kahlweit, E. Lessner and R. Strey, J. Phys. Chem., 1983, 87, 5032 CrossRef CAS.
  13. M. Kahlweit, R. Strey and P. Firman, J. Phys. Chem., 1986, 90, 671 CrossRef CAS.
  14. J. C. Lang and R. D. Morgan, J. Chem. Phys., 1980, 73, 5849 CrossRef CAS.
  15. M. Kahlweit, R. Strey and G. Busse, Phys. Rev. E, 1993, 47, 4197 CrossRef CAS.
  16. T. Sottmann and R. Strey, J. Phys.: Condens. Matter, 1996, 8, A39 CrossRef CAS.
  17. R. Evans, Adv. Phys., 1979, 28, 143 CAS.
  18. T. A. Cherepanova and A. V. Stekolnikov, Mol. Phys., 1994, 82, 125 CAS.
  19. C. Seok and D. W. Oxtoby, J. Chem. Phys., 1998, 109, 7982 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.