Slow stress relaxation in liquid crystal elastomers and gels

(Note: The full text of this document is currently only available in the PDF Version )

S. M. Clarke and E. M. Terentjev


Abstract

Randomly disordered (polydomain) liquid crystalline elastomers align under stress above the structural glass transition Tg to form a monodomain. We study the dynamics of stress relaxation during the polydomain–monodomain (P–M) transition analysing the results using the spin-glass nematic order concept. The results for different materials show a universal ultra-slow logarithmic behaviour, especially pronounced in the region of the P–M transition. The data are approximated very well by an equation σ(t)∽σeq(ε)+A/(1+α ln t). We propose a theoretical model of self-retardation based on the concept of cooperative mechanical resistance for the re-orientation of each domain, attempting to follow the soft-deformation pathway.


References

  1. T. Bellini, N. A. Clark, C. D. Muzny, L. Wu, C. W. Garland, D. W. Schaefer and B. J. Oliver, Phys. Rev. Lett., 1992, 69, 788 CrossRef CAS.
  2. L. Wu, B. Zhou, C. W. Garland, T. Bellini and D. W. Schaefer, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1995, 51, 2157 CrossRef CAS.
  3. M. [C with combining breve]pi[c with combining breve] and A. Mertelj, Phys. Rev. Lett., 1998, 80, 1449 CrossRef.
  4. V. S. Dotsenko, Theory of spin glasses and neural networks, World Scientific, Singapore, 1994 Search PubMed.
  5. D. S. Fisher, Phys. Rev. Lett., 1986, 56, 416 CrossRef CAS; A. T. Ogielski and D. A. Huse, Phys. Rev. Lett., 1986, 56, 1298 CrossRef.
  6. C. Godréche, J. P. Bouchaud and M. Mezard, J. Phys. A, 1995, 28, L603 CrossRef CAS.
  7. X.-l. Wu, W. I. Goldburg, M. X. Liu and J. Z. Xue, Phys. Rev. Lett., 1992, 69, 470 CrossRef CAS.
  8. T. Bellini, N. A. Clark and D. W. Schaefer, Phys. Rev. Lett., 1995, 74, 2740 CrossRef CAS.
  9. A. I. Larkin, Sov. Phys. JET P (Engl. Transl.), 1970, 31, 784 Search PubMed; Y. Imry and S.-K. Ma, Phys. Rev. Lett., 1975, 35, 1399 CrossRef CAS.
  10. M. Warner and E. M. Terentjev, Prog. Polym. Sci., 1996, 21, 853 CrossRef CAS.
  11. S. V. Fridrikh and E. M. Terentjev, Phys. Rev. Lett., 1997, 79, 4661 CrossRef CAS.
  12. S. M. Clarke, E. M. Terentjev, I. Kundler and H. Finkelmann, Macromolecules, 1998, 31, 4862 CrossRef CAS.
  13. E. R. Zubarev, T. I. Yuranova, R. V. Talroze, N. A. Plate and H. Finkelmann, Macromolecules, 1998, 31, 3566 CrossRef CAS.
  14. C. Ortiz, R. Kim, E. Rodighiero, C. K. Ober and E. J. Kramer, Macromolecules, 1998, 31, 4074 CrossRef CAS.
  15. H. M. Jaever, C.-h. Liu and S. R. Nagel, Phys. Rev. Lett., 1989, 62, 40 CrossRef.
  16. M. B. Weissman, Rev. Mod. Phys., 1988, 60, 537 CrossRef CAS.
  17. J. Küpfer and H. Finkelmann, Macromol. Chem. Phys., 1994, 195, 1353 CrossRef.
  18. C. H. Legge, F. J. Davis and G. R. Mitchell, J. Phys. II, 1991, 1, 1253 Search PubMed.
  19. C. Ortiz, C. K. Ober and E. J. Kramer, Polymer, 1998, 39, 3713 CrossRef CAS.
  20. L. C. E. Struik, Physical aging in amorphous polymers and other materials, Elsevier, Amsterdam, 1978 Search PubMed.
  21. L. Levy, J. Phys. I, 1993, 3, 533 Search PubMed.
  22. G. Parisi, Phys. Rev. Lett., 1997, 79, 3660 CrossRef CAS.
  23. J. P. Bouchaud, L. F. Cugliandolo, J. Kurchan and M. Mezard, in Spin Glasses and Random Fields, ed. A. P. Young, World Scientific, Singapore, 1997 Search PubMed.
  24. P. D. Olmsted, J. Phys. II, 1994, 4, 2215 Search PubMed.
  25. Apart from an ordinary small intra-chain relaxation seen in all rubbers, e.g., see J. D. Ferry, Viscoelastic properties of polymers, Wiley, New York, 1980 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.