Interactions between poly(2-ethylacrylic acid) and lipid bilayer membranes: Effects of cholesterol and grafted poly(ethylene glycol)

(Note: The full text of this document is currently only available in the PDF Version )

David Needham, Jeff Mills and Gary Eichenbaum


Abstract

The exchange of the protonatable polymer, poly(2-ethylacrylic acid) (PEAA), has been studied with vesicle membranes containing cholesterol from 0 to 60 mol% or PEG2000-lipid (5 mol%). The release of an entrapped dye from 100 nm extruded liposomes was used as an assay for membrane perturbation by the polymer as a function of pH. The inclusion of cholesterol was found to reduce the pH at which the polymer caused release of the dye from the lipid vesicles, and the degree of polymer protonation (i.e., degree of hydrophobicity) correlated well with the increase in elastic expansion modulus of the vesicle bilayer. The results are discussed in terms of a balance between polymer solubility and membrane expansion. With respect to the PEG barrier, the presence of 5 mol% PEG2000, which represents full surface coverage, did not prevent PEAA from inducing contents release, demonstrating that highly hydrated polymeric layers are not effective barriers for other water soluble polymers, and may point to some association between the two polymers.


References

  1. E. Evans, W. Rawicz and A. F. Hoffman, Bile Acids in Gasteroenterology Basic and Clinical Advances, ed. A. F. Hoffman, G. Paumgartner and A. Stiehl, Kluwer Academic Publishers, Dordrecht, Boston, London, 1994, pp. 59–68 Search PubMed.
  2. D. Needham and D. V. Zhelev, Ann. Biomed. Egr., 1995, 23, 287 Search PubMed.
  3. D. V. Zhelev, Biophys. J., 1996, 71, 257 CAS.
  4. D. V. Zhelev, Biophys. J., 1998, 75, 321 CrossRef CAS.
  5. J. L. Thomas and D. A. Tirrell, Acc. Chem. Res., 1992, 25, 336 CrossRef CAS.
  6. K. A. Borden, K. M. Eum, K. H. Langley and D. A. Tirrell, Macromolecules, 1987, 20, 454 CrossRef CAS.
  7. M. Bloom, E. Evans and O. G. Mouritsen, Q. Rev. Biophys., 1991, 24, 293 CrossRef CAS.
  8. D. Needham and R. S. Nunn, Biophys. J., 1990, 58, 997 CrossRef CAS.
  9. D. Needham and D. V. Zhelev, Vesicles, ed. Rosoff, Marcel Dekker, New York and Basel, 1996 Search PubMed.
  10. D. Needham, T. J. McIntosh and D. V. Zhelev, Liposomes, Rational Design., ed. A. Janoff, Marcel DekkerNew York, 1998, in press Search PubMed.
  11. D. Needham, N. Stoiceva and D. V. Zhelev, Biophysical, 1997, 73, 2615 Search PubMed.
  12. D. Noppl-Simson and D. Needham, Biophys. J., 1996, 70, 1391 CrossRef CAS.
  13. R. R. C. New, Liposomes: A Practical Approach., ed. R. R. C. New, Oxford University Press, New York, 1990, ch. 2 Search PubMed.
  14. M. J. Hope, R. Nayay, L. D. Mayer and C. P. R. Tilcock, Liposome Technology: Liposome Preparation and Related Techniques., ed. G. Gregoriadis, CRC Press, Boca Raton, Fl., 1993, ch. 8 Search PubMed.
  15. F. M. Goñi, M. A. Urbaneja and A. Alonso, Liposome Technology: Entrapment of Drugs and Other Materials, ed. G. Gregoriadis, CRC Press, Boca Raton Fl., 1993, ch. 15 Search PubMed.
  16. K. H. Langley, U. K. O. Shröder and D. A. Tirrell, personal communication.
  17. K. Seki and D. A. Tirrell, Macromolecules, 1984, 17, 1692 CrossRef CAS.
  18. K. A. Borden, K. M. Eum, K. H. Langley, J. S. Tan, D. A. Tirrell and C. L. Voycheck, Macromolecules, 1988, 21, 2649 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.