Phospholipid chain length alters the equilibrium between pore and channel forms of gramicidin

(Note: The full text of this document is currently only available in the PDF Version )

Toby P. Galbraith and B A. Wallace


Abstract

Gramicidin is an excellent model system for studying the passage of ions through biological membranes. The conformation of gramicidin is well defined in many different solvent and lipid systems, as are its conductance and spectroscopic properties. It is a polymorphic molecule that can adopt two different types of structure, the double helical "‘pore’' and the helical dimer "‘channel’'. This study investigated the influence of the acyl chain length of membrane phospholipids on the conformations adopted by gramicidin. We used circular dichroism spectroscopy to examine the conformational equilibrium between the pore and channel forms in small unilamellar vesicles of phosphatidylcholine with acyl chain lengths of 18, 20 and 22 carbons. Our results show that in C18 and C20 lipids almost all the gramicidin is in the channel form, while in the longer C22 lipids the equilibrium shifts in favour of pore conformations, such that they form up to 43% of the total population. This change is attributed to the ability of the double helical conformation to tolerate more hydrophobic mismatch than the helical dimer, perhaps due to the greater number of stabilising intermolecular hydrogen bonds.


References

  1. R. D. Hotchkiss and R. J. Dubos, J. Biol. Chem., 1940, 132, 791 CAS.
  2. S. B. Hladky and D. A. Haydon, Biochim. Biophys. Acta, 1972, 274, 294.
  3. R. Sarges and B. Witkop, J. Am. Chem. Soc., 1965, 87, 2011 CrossRef CAS.
  4. W. R. Veatch and E. R. Blout, Biochemistry, 1974, 13, 5257 CrossRef CAS.
  5. D. W. Urry, Proc. Natl. Acad. Sci. U.S.A., 1972, 68, 672.
  6. G. N. Ramachandran and R. Chandrasekaran, Indian J. Biochem., 1972, 9, 1 Search PubMed.
  7. A. S. Arseniev, I. L. Barsukov, V. F. Bystrov, A. L. Lomize and Y. A. Ovchinnikov, FEBS Lett., 1985, 186, 168 CrossRef CAS.
  8. W. R. Veatch, E. T. Fossel and E. R. Blout, Biochemistry, 1974, 13, 5249 CrossRef CAS.
  9. Y. Chen and B. A. Wallace, Biopolymers, 1997, 42, 771 CrossRef CAS.
  10. S. V. Sychev, L. Barsukov and V. Y. Ivanov, Eur. Biophys. J., 1993, 22, 279 CrossRef CAS.
  11. K. J. Cox, C. Ho, J. V. Lombardi and O. D. Stubbs, Biochemistry, 1992, 31, 1112 CrossRef CAS.
  12. J. D. Callahan, R. Bittman and B. A. Wallace, unpublished results.
  13. J. A. Killian, K. U. Prasad, D. Hains and D. W. Urry, Biochemistry, 1988, 27, 4848 CrossRef CAS.
  14. P. V. LoGrasso, F. Moll III and T. A. Cross, Biophys. J., 1988, 54, 259 CAS.
  15. M. C. Bano, L. Braco and C. Abad, Biochemistry, 1991, 30, 886 CrossRef CAS.
  16. M. Bouchard and M. Auger, Biophys. J., 1993, 65, 2484 CrossRef CAS.
  17. R. E. Koeppe II and O. S. Andersen, Annu. Rev. Biophys. Biomol. Struct., 1996, 25, 231 CrossRef.
  18. L. L. Providence, O. S. Andersen, D. V. Greathouse, R. E. Koeppe II and R. Bittman, Biochemistry, 1995, 34, 16404 CrossRef CAS.
  19. J. Girshman, D. V. Greathouse, R. E. Koeppe and O. S. Andersen, Biophys. J., 1997, 3, 1310.
  20. D. B. Sawyer, R. E. Koeppe II and O. S. Andersen, Biophys. J., 1990, 57, 515 CAS.
  21. N. Mobashery, C. Nielsen and O. S. Andersen, FEBS Lett., 1997, 412, 15 CrossRef CAS.
  22. B. A. Wallace, W. R. Veatch and E. R. Blout, Biochemistry, 1981, 20, 5754 CrossRef CAS.
  23. B. A. Wallace and C. L. Teeters, Biochemistry, 1987, 26, 65 CrossRef CAS.
  24. D. V. Greathouse, J. F. Hinton, K. S. Kim and R. E. Koeppe II, Biochemistry, 1994, 33, 4291 CrossRef CAS.
  25. B. M. Burkhart, N. Li, D. A. Langs, W. A. Pangborn and W. L. Duax, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 12950 CrossRef CAS.
  26. B. A. Wallace, Biophys. J., 1984, 45, 114 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.