Protein inclusion in lipid membranes: A theory based on the hypernetted chain integral equation

(Note: The full text of this document is currently only available in the PDF Version )

Patrick Lagüe, Martin J. Zuckermann and Benoît Roux


Abstract

A theory for describing the structure of the hydrocarbon chains around a protein inclusion embedded in a lipid bilayer is developed on the basis of the hypernetted chain integral equation formalism for liquids. The exact lateral density–density response function of the hydrocarbon core, which is extracted from a molecular dynamics simulation of a pure lipid bilayer, is used as input to the theory. Numerical calculations show that the average lipid order is perturbed over a distance of 25 to 30 Å around a hard repulsive cylinder of 5 Å radius representing an α-helical polyleucine protein inclusion. The lipid-mediated protein–protein interaction is calculated and is shown to be non-monotonic, being repulsive at an intermediate range but attractive at short range. It is found that the lipid matrix contributes a free energy well of 8 kBT to the association of two cylindrical inclusions.


References

  1. W. Kleeman and H. M. McConnell, BBA, 1974, 345, 220 Search PubMed.
  2. B. A. Lewis and D. M. Engelman, J. Mol. Biol., 1984, 166, 203.
  3. M. A. Lemmon and D. M. Engelman, Quart. Rev. Biophys., 1994, 27, 157 CrossRef CAS.
  4. C. Nielsen, M. Goulian and O. S. Andersen, Biophys. J., 1998, 74, 1966 CrossRef CAS.
  5. R. B. Gennis, Biomembranes Molecular Structure and Function, Springer-Verlag, New York, 1989 Search PubMed.
  6. S. Marcelja, Biochim. Biophys. Acta, 1976, 455, 1 CAS.
  7. H. Schröder, J. Chem. Phys., 1977, 67, 1617 CrossRef.
  8. J. C. Owicki, M. W. Springgate and H. M. McConnell, PNAS, 1978, 75, 1616 Search PubMed.
  9. J. C. Owicki and H. M. McConnell, PNAS, 1979, 76, 4750 Search PubMed.
  10. L. T. Pearson, J. Edelman and S. I. Chan, Biophys. J., 1984, 45, 863 CAS.
  11. P. G. deGennes, The Physics of Liquid Crystals, Oxford University Press, London, 1974 Search PubMed.
  12. M. Goulian, R. Bruinsma and P. Pincus, Europhys. Lett., 1993, 22, 145 Search PubMed.
  13. P. A. Kralchevsky, V. N. Paunov and N. D. Denkov, J. Chem. Soc., Faraday Trans., 1995, 91, 3415 RSC.
  14. H. Aranda-Espinoza, A. Berman, N. Dan, P. Pincus and S. Safran, Biophys. J., 1996, 71, 648 CrossRef CAS.
  15. Biological Membranes. A molecular perspective from computation and experiment, ed. K. M. In Merz and B. Roux, Birkhauser, Boston, 1996 Search PubMed.
  16. E. Egberts and H. J. C. Berendsen, J. Chem. Phys., 1988, 89, 3718 CrossRef CAS.
  17. S. E. Feller, R. M. Venable and R. W. Pastor, Langmuir, 1997, 13, 6555 CrossRef CAS.
  18. T. B. Woolf and B. Roux, Proteins: Struct. Funct. Genet., 1996, 24, 92 CrossRef CAS.
  19. L. Shen, D. Bassolino and T. Stouch, Biophys. J., 1997, 73, 3 CrossRef CAS.
  20. D. P. Tieleman and H. J. C. Berendsen, Biophys. J., 1998, 74, 2786 CrossRef CAS.
  21. J. P. Postma, H. C. Berendsen and J. R. Haak, Faraday Symp. Chem. Soc., 1982, 17, 55 RSC.
  22. T. Sintes and A. Baumgärtner, Biophys. J., 1997, 73, 2251 CrossRef CAS.
  23. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd edn., Academic Press Inc., San Diego, 1986 Search PubMed.
  24. D. Chandler, J. D. McCoy and S. J. Singer, J. Chem. Phys., 1986, 85, 5971 CrossRef CAS.
  25. D. Beglov and B. Roux, J. Chem. Phys., 1995, 103, 360 CrossRef CAS.
  26. D. Beglov and B. Roux, J. Phys. Chem., 1997, 101, 7821 Search PubMed.
  27. L. W. Pratt and D. Chandler, J. Chem. Phys., 1977, 67, 3683 CrossRef CAS.
  28. M. Frigo and S. G. Johnson, ICASSP Conference Proceedings, 1998, 3, 1382 Search PubMed.
  29. N. Ben-Tal and B. Honig, Biophys. J., 1996, 71, 3046 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.