Functional immobilization of biomembrane fragments on planar waveguides for the investigation of side-directed ligand binding by surface-confined fluorescence

(Note: The full text of this document is currently only available in the PDF Version )

Michael Pawlak, a Ernst Grell, Eginhard Schick, Dario Anselmetti and Markus Ehrat


Abstract

A method for the functional immobilization of Na,K-ATPase-rich membrane fragments on planar metal oxide waveguides has been developed. A novel optical technique based on the highly sensitive detection of surface-confined fluorescence in the evanescent field of the waveguide allowed us to investigate the interactions of the immobilized protein with cations and ligands. For specific binding studies, a FITC-Na,K-ATPase was used, which had been labelled covalently within the ATP-binding domain of the protein. Fluorophore labels of the surface-bound enzyme can be selectively excited in the evanescent field. A preserved functional activity of the immobilized enzyme was only found when a phospholipid monolayer was preassembled onto the hydrophobic chip surface to form a gentle, biocompatible interface. Insitu atomic force microscopy (AFM) was used to examine and optimize the conditions for the lipid and membrane fragment assembly and the quality of the formed layers. The enzyme's functional activity was tested by selective K+ cation binding, interaction with anti-fluorescein antibody 4-4-20, phosphorylation of the protein and binding of inhibitory ligand ouabain. The comparison with corresponding fluorescence intensity changes found in bulk solution provides information about the side-directed surface binding of the Na,K-ATPase membrane fragments. The affinity constants of K+ ions to the Na,K-ATPase was the same for the immobilized and the non-immobilized enzyme, providing evidence for the highly native environment on the surface. The method for the functional immobilization of membrane fragments on waveguide surfaces will be the basis for future applications in pharmaceutical research where advanced methods for exploring the molecular mechanisms of membrane receptor targets and drug screening are required.


References

  1. R. B. Gennis, in Biomembranes, ed. Ch. R. Cantor, Springer Verlag, New York, 1989 Search PubMed.
  2. D. Bray, Annu. Rev. Biophys. Biomol. Struct., 1998, 27, 59 CrossRef CAS.
  3. N. Unwin, Cell, 1993, 72, 31.
  4. J. P. Changeux, Sci. Am., 1996, 6, 499 Search PubMed.
  5. R. J. Lefkowitz, S. Cottechia, P. Samama and T. Costa, Trends Pharmacol. Sci., 1993, 14, 303 CrossRef CAS.
  6. A. G. Gilaman, Angew. Chem. Int. Ed. Engl., 1995, 34, 1406 CAS.
  7. J. R. Broach and J. Thorner, Nature (London), 1996, 384(6604 Suppl.), 14 CAS.
  8. J. J. Burbaum and N. H. Sigal, Curr. Opin. Chem. Biol., 1997, 1, 72 CrossRef CAS.
  9. P. Fürst and J. Heim, BIOforum Int., 1998, 2, 64 Search PubMed.
  10. E. L. Schmid, A. P. Tairi, R. Hovius and H. Vogel, Anal. Chem., 1998, 70, 1331 CrossRef CAS.
  11. J. Hodgson, Biotechnology, 1994, 12, 31 Search PubMed.
  12. A. G. Frutos and R. M. Horn, Anal. Chem., 1998, 70, 449A.
  13. G. L. Duveneck, M. Pawlak, D. Neuschäfer, W. Budach and M. Ehrat, SPIE, Proceedings of Biomedical Systems and Technologies, 1996, 2928, 98 Search PubMed.
  14. G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bär, W. Budach, U. Pieles and M. Ehrat, Sens. Actuat. B, 1997, 38–39, 88 CrossRef.
  15. J. C. Skou, Biochim. Biophys. Acta, 1957, 23, 394 CrossRef CAS.
  16. S. J. D. Karlish, in Na, K-AT Pase Structure and Kinetics, ed. J. C. Skou and J. G. Norby, Academic Press, New York, 1979, p. 115 Search PubMed.
  17. C. Hegyvary and P. L. Jørgensen, J. Biol. Chem., 1981, 256, 6296 CAS.
  18. E. Grell, R. Warmuth and H. Ruf, Acta Physiol. Scand., 1992, 146, 213; 1993, 147, 343 Search PubMed.
  19. P. L. Jørgensen, Biochim. Biophys. Acta, 1974, 356, 36 CAS.
  20. O. H. Lowry, N. J. Rosenbrough, A. L. Farr and R. J. Randall, J. Biol. Chem., 1951, 193, 265 CAS.
  21. D. Porschke and E. Grell, Biochim. Biophys. Acta, 1995, 1231, 181 CrossRef CAS.
  22. D. Brovelli, L. Ruiz, G. Kraus, G. Hähner, R. Hofer, A. Waldner, J. Schlösser, P. Oroszlan, M. Ehrat and N. D. Spencer, Langmuir, 1999, submitted Search PubMed.
  23. M. Pawlak, E. Grell, D. Anselmetti and M. Ehrat, in preparation.
  24. S. Terretaz, T. Stora, C. Duschl and H. Vogel, Langmuir, 1993, 9, 1361 CrossRef CAS.
  25. E. Lewitzki, E. Schick and E. Grell, J. Fluoresc., 1998, 8, 113 Search PubMed.
  26. M. Pawlak, E. Schmid, R. Hovius, E. Grell, H. Vogel and M. Ehrat, in IBC Conference Proceedings ‘High Throughput Screening’, IBC, Southborough, USA, 1998 Search PubMed.
  27. K. R. Rogers, J. J. Valdes and M. E. Eldefrawi, Biosens. Bioelectron., 1991, 6, 1 CrossRef CAS.
  28. C. Duschl, A. F. Sévin-Landais and H. Vogel, Biophys. J., 1996, 70, 1985 CAS.
  29. D. J. Müller, M. Amrein and A. Engel, J. Struct. Biol., 1997, 119, 172 CrossRef CAS.
  30. D. C. Gadsby, M. Nakao, A. Bahinski, G. Nagel and M. Suenson, Acta Physiol. Scand., 1992, 146, 111 CAS.
  31. W. Schwarz and L. A. Vasilets, Cell Biol. Int., 1996, 20, 67 CrossRef CAS.
  32. S. D. J. Karlish and U. Pick, J. Physiol., 1981, 312, 505 CAS.
  33. A. Rephaeli, D. Richards and S. D. J. Karlish, J. Biol. Chem., 1986, 261, 6248 CAS.
  34. F. Cornelius, in The Sodium Pump: Structure, Mechanism, and Regulation, ed. J. H. Kaplan and P. De Weer, Rockefeller University Press, New York, 1991, p. 267 Search PubMed.
  35. K. Fendler, E. Grell, M. Haubs and E. Bamberg, EMBO J., 1985, 12, 3079.
  36. A. Eisenrauch, E. Grell and E. Bamberg, in ref. 34, p. 317.
  37. D. W. Hilgemann, Ann. N.Y. Acad. Sci., 1997, 260 CAS.
  38. U. Eckstein-Ludwig, J. Rettinger, L. A. Vasilets and W. Schwarz, Biochim. Biophys. Acta, 1998, 1372, 289 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.