Analysis of membrane protein cluster densities and sizes insitu by image correlation spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

Nils O. Petersen, Claire Brown, Anna Kaminski, Jonathan Rocheleau, Mamta Srivastava and Paul W. Wiseman


Abstract

Communication between cells invariably involves interactions of a signalling molecule with a receptor at the surface of the cell. Typically, the receptor is imbedded in the membrane and it is hypothesized that the binding of the signalling molecule causes a change in the state of aggregation of the receptor which, in turn, initiates a biochemical signal within the cell. Subsequently, many of the occupied receptors bind to membrane-associated structures, called coated pits, which invaginate and pinch off to form coated vesicles, thereby removing the receptors from the cell surface. The state of aggregation of membrane receptors is obviously in constant flux. Any useful approach to measuring the state of aggregation must, therefore, allow for dynamic measurements in living cells. It is possible to use fluorescently labelled signalling molecules or antibodies directed at the receptor of interest to visualize the receptor on the cell surface with a fluorescence microscope. By employing a laser confocal microscope, high resolution images can be produced in which the fluorescence intensity is quantitatively imaged as a function of position across the surface of the cell. Calculations of autocorrelation functions of these images provide direct and accurate measures of the density of fluorescent particles on the surface. Combined with the average intensity in the image, which reflects the total average number of molecules, it is possible to estimate the degree of aggregation of the receptor molecules. We refer to this analysis as image correlation spectroscopy (ICS). We show how ICS can be used to measure the density of several receptors on a variety of cells and how it can be used to measure the density of coated pits and the number of molecules per coated pit. We also show how the technique can be used to monitor fusion of virus particles to cell membranes. Further, we illustrate that, by calculating cross-correlation functions between pairs of images, we can extend the analysis to measurements of the distributions as a function of time, on the second timescale, as well as to measurements of the movement of the receptor aggregates on the surface. Finally, we illustrate that, by this approach, we can measure the extent of interaction between two different receptors as a function of time. This represents the most quantitative measurement of the extent of co-localization of receptors available and is independent of the spatial resolution of the confocal microscope. The theory of ICS and image cross-correlation spectroscopy (ICCS), focussing on the interpretation of the data in terms of the biological phenomenon being probed, is discussed.


References

  1. D. Sheets, R. Simson and K. Jacobson, Curr. Opin. Cell Biol., 1995, 7, 707 CrossRef.
  2. A. Kusumi and Y. Sako, Curr. Opin. Cell Biol., 1996, 8, 556 CrossRef.
  3. S. L. Schmid, Annu. Rev. Biochem., 1997, 66, 511 CrossRef CAS.
  4. R. G. Parton and K. Simons, Science, 1995, 269, 1398 CAS.
  5. D. A. Brown and J. K. Bose, Cell, 1992, 68, 533 CrossRef CAS.
  6. R. G. Parton, J. Histochem. Cytochem., 1994, 42, 155 Search PubMed.
  7. T. Harder and K. Simons, Curr. Opin. Cell Biol., 1997, 9, 534 CrossRef CAS.
  8. A. Sorkin and C. M. Waters, Bioessays, 1993, 15, 375 CAS.
  9. J. Schlessinger, Trends Biochem. Sci., 1998, 13, 443 CrossRef CAS.
  10. T. Kirchhausen, J. S. Bonifacino and H. Riezman, Curr. Opin. Cell Biol., 1997, 9, 488 CrossRef CAS.
  11. T. Kirchhausen, Curr. Opin. Cell Biol., 1993, 3, 182 CAS.
  12. C. Lamaze and S. L. Schmid, Curr. Opin. Cell Biol., 1995, 7, 573 CrossRef CAS.
  13. I. V. Sandoval and O. Bakke, Trends Cell Biol., 1994, 4, 292 CrossRef CAS.
  14. W. Boll, H. Ohno, Z. Sangyang, I. Rapoport, L. C. Cantley, J. S. Bonifacino and T. Kirchhausen, EMBO J., 1996, 15, 5789 CAS.
  15. H. Ohno, J. Stewart, M. Fournier, H. Bosshart, I. Rhee, S. Miyatake, T. Saito, A. Gallusser, T. Kirchhausen and J. S. Bonifacino, Science, 1995, 169, 1872.
  16. J. E. Heuser, J. Cell Biol., 1980, 84, 560 CAS.
  17. J. E. Heuser and J. H. Keen, J. Cell Biol., 1988, 107, 877 CAS.
  18. D. Gross and W. W. Webb, Biophys. J., 1986, 49, 901 CAS.
  19. J. B. Pawley, Handbook of Biological Confocal Microscopy, Plenum Press, New York, 2nd edn., 1995 Search PubMed.
  20. P. W. Wiseman, P. Höddelius, N. O. Petersen and K. E. Magnusson, FEBS, 1997, 401, 43 Search PubMed.
  21. M. Srivastava and N. O. Petersen, Meth. Cell Sci., 1996, 18, 47 Search PubMed.
  22. B. van Steensel, E. P. van Binnendijk, C. D. Hornsby, H. T. M. van der Voort, Z. S. Krozowski, E. R. de Kloet and R. van Driel, J. Cell Sci., 1996, 109, 787 Search PubMed.
  23. D. Demandolx and J. Davoust, J. Microsc., 1997, 185, 21 CrossRef.
  24. N. O. Petersen, Can. J. Biochem. Cell Biol., 1984, 62, 1158 CAS.
  25. C. M. Brown, PhD Thesis, The University of Western Ontario, London, Canada, 1998.
  26. C. M. Brown, Biochim. Biophys. Acta, 1998, submitted Search PubMed.
  27. N. O. Petersen, P. L. Hoddelius, P. W. Wiseman, O. Seger and K. E. Magnusson, Biophys. J., 1993, 65, 1135 CrossRef CAS.
  28. B. J. Berne and R. Pecora, Dynamics Light Scattering with Applications to Chemistry, Biology and Physics, Wiley, New York, 1976, pp. 10–22 Search PubMed.
  29. N. Davidson, Statistical Mechanics, McGraw-Hill, 1962 Search PubMed.
  30. N. O. Petersen, Biophys. J., 1986, 49, 809 CrossRef CAS.
  31. E. Fire, C. M. Brown, R. G. Roth, Y. I. Henis and N. O. Petersen, J. Biol. Chem., 1997, 272, 29538 CrossRef CAS.
  32. P. R. St-Pierre and N. O. Petersen, Biochemistry, 1992, 31, 2459 CrossRef CAS.
  33. Z. Foeldes-Papp, A. Schnetz and R. Riegler, Biophys. J., 1998, 74, A184.
  34. N. O. Petersen, S. Felder and E. L. Elson, in Handbook of Experimental Immunology, ed. D. M. Weir, L. A. Herzenberg, C. C. Blackwell and L. A. Herzenberg, Blackwell Scientific, Edinburgh, 1985, ch. 24 Search PubMed.
  35. N. O. Petersen and E. L. Elson, in Methods in Enzymology, ed. C. H. W. Hirs and S. N. Timasheff, Academic Press, New York, 1985 Search PubMed.
  36. W. Mendenhall, Introduction to Probability and Statistics, 7th edn., 1987, pp. 64–65 Search PubMed.
  37. A. G. Benn and R. J. Kulperger, Environmetrics, 1996, 7, 167 CrossRef.
  38. P. W. Wiseman, PhD Thesis, The University of Western Ontario, London, Canada, 1995.
  39. R. A. Seifert, C. E. Hart, P. E. Phillips, J. W. Forstrom, R. Ross, M. J. Murray and D. F. Bowen-Pope, J. Biol. Chem., 1989, 264, 8771 CAS.
  40. T. Kawamoto, J. D. Sato, A. Le, J. Polikoff, G. H. Sato and J. Mendelsohn, Proc. Natl. Acad. Sci. USA, 1983, 80, 1337 CAS.
  41. M. S. Robinson, Curr. Opin. Cell Biol., 1994, 6, 538 CAS.
  42. G. Odorizzi, C. R. Cowles and S. D. Emr, Trends Cell Biol., 1998, 8, 282 CrossRef CAS.
  43. R. G. W. Anderson, M. S. Brown and J. L. Goldstein, Cell, 1977, 10, 351 CAS.
  44. J. Lazarovits and M. G. Roth, Cell, 1988, 53, 743 CAS.
  45. D. E. Zwart, C. B. Brewer, J. Lazarovits, Y. I. Henis and M. G. Roth, J. Biol. Chem., 1996, 271, 907 CrossRef CAS.
  46. E. Fire, O. Gutman, M. G. Roth and Y. I. Henis, J. Biol. Chem., 1995, 270, 21075 CrossRef CAS.
  47. C. M. Brown, J. Cell Sci., 1998, 111, 271 Search PubMed.
  48. B. J. Rasmusson, T. D. Flanagan, S. J. Turco, R. M. Epand and N. O. Petersen, Biochim. Biophys. Acta, 1998, 14357, 1.