Lipid packing stress and polypeptide aggregation: alamethicin channel probed by proton titration of lipid charge

(Note: The full text of this document is currently only available in the PDF Version )

Sergey M. Bezrukov, R Peter Rand, Igor Vodyanoy and V Adrian Parsegian


Abstract

Lipid membranes are not passive, neutral scaffolds to hold membrane proteins. In order to examine the influence of lipid packing energetics on ion channel expression, we study the relative probabilities of alamethicin channel formation in dioleoylphosphatidylserine (DOPS) bilayers as a function of pH. The rationale for this strategy is our earlier finding that the higher-conductance states, corresponding to larger polypeptide aggregates, are more likely to occur in the presence of lipids prone to hexagonal HII-phase formation (specifically DOPE), than in the presence of lamellar Lα-forming lipids (DOPC). In low ionic strength NaCl solutions at neutral pH, the open channel in DOPS membranes spends most of its time in states of lower conductance and resembles alamethicin channels in DOPC; at lower pH, where the lipid polar groups are neutralized, the channel probability distribution resembles that in DOPE. X-Ray diffraction studies on DOPS show a progressive decrease in the intrinsic curvature of the constituent monolayers as well as a decreased probability of HII-phase formation when the charged lipid fraction is increased. We explore how proton titration of DOPS affects lipid packing energetics, and how these energetics couple titration to channel formation.


References

  1. B. J. Litman and D. C. Mitchell, Lipids, 1996, 31, S193 Search PubMed.
  2. A. Bienvenue and J. S. Marie, Curr. Top. Membr., 1994, 40, 319 Search PubMed.
  3. R. E. Koeppe, II and O. S. Andersen, Annu. Rev. Biophys. Biomol. Struct., 1996, 25, 231 CrossRef.
  4. H. J. Apell, E. Bamberg and P. Lauger, Biochim. Biophys. Acta, 1979, 552, 369 CrossRef CAS.
  5. T. K. Rostovtseva, V. M. Aguilella, I. Vodyanoy, S. M. Bezrukov and V. A. Parsegian, Biophys. J., 1998, 75, 1783 CAS.
  6. E. Bamberg and P. Lauger, Biochim. Biophys. Acta, 1974, 367, 127 CrossRef CAS.
  7. E. Neher and H. Eibl, Biochim. Biophys. Acta, 1977, 464, 37 CrossRef CAS.
  8. V. Fonseca, P. Daumas, L. Ranjalahy-Rasoloarijao, F. Heitz, R. Lazaro, Y. Trudelle and O. S. Andersen, Biochemistry, 1992, 31, 5340 CrossRef CAS.
  9. J. A. Killian, Biochim. Biophys. Acta, 1992, 1113, 391 CAS.
  10. J. Girshman, D. V. Greathouse, R. E. Koeppe II and O. S. Andersen, Biophys. J., 1997, 73, 1310 CAS.
  11. C. Nielsen, M. Goulian and O. S. Andersen, Biophys. J., 1998, 74, 1966 CrossRef CAS.
  12. J. A. Lundbaek and O. S. Andersen, J. Gen. Physiol., 1994, 104, 645 Search PubMed.
  13. M. Goulian, O. N. Mesquita, D. K. Fygenson, C. Nielsen, O. S. Andersen and A. Libchaber, Biophys. J., 1998, 74, 328 CrossRef CAS.
  14. M. S. P. Sansom, Prog. Biophys. Mol. Biol., 1991, 55, 139 CrossRef CAS.
  15. G. A. Wooley and B. A. Wallace, J. Membrane Biol., 1992, 129, 109 Search PubMed.
  16. D. S. Cafiso, Annu. Rev. Biophys. Biomol. Struct., 1994, 23, 141 CrossRef CAS.
  17. G. Boheim, J. Membrane Biol., 1974, 19, 277 Search PubMed.
  18. R. Latorre and J. J. Donovan, Acta Physiol. Scand. (Suppl.), 1980, 481, 37 Search PubMed.
  19. J. E. Hall, I. Vodyanoy, T. M. Balasubramanian and G. Marshall, Biophys. J., 1984, 45, 233 CrossRef CAS.
  20. S. Stankowski, U. D. Schwarz and G. Schwarz, Biochim. Biophys. Acta, 1988, 941, 11 CrossRef CAS.
  21. L. R. Opsahl and W. W. Webb, Biophys. J., 1994, 66, 71 CrossRef CAS.
  22. S. L. Keller, S. M. Bezrukov, S. M. Gruner, M. W. Tate, I. Vodyanoy and V. A. Parsegian, Biophys. J, 1993, 65, 23 CrossRef CAS.
  23. S. M. Bezrukov, I. Vodyanoy, P. Rand and V. A. Parsegian, Biophys. J., 1995, 68, A341.
  24. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, Molecular Biology of the Cell, Garland Publishers, New York, 1994 Search PubMed.
  25. S. M. Bezrukov and I. Vodyanoy, Biophys. J., 1993, 64, 16 CAS.
  26. M. Montal and P. Mueller, Proc. Natl. Acad. Sci. USA, 1972, 65, 3561.
  27. Cell Physiology, ed. N. Sperelakis, Academic Press, San Diego, 1988 Search PubMed.
  28. O. G. Mouritsen and M. Bloom, Annu. Rev. Biophys. Biomol. Struct., 1993, 22, 145 CrossRef CAS.
  29. S. M. Gruner, Proc. Natl. Acad. Sci. USA, 1985, 82, 3665 CAS.
  30. C. D. McCallum and R. M. Epand, Biochemistry, 1995, 34, 1815 CrossRef CAS.
  31. C. D. Stubbs and S. J. Slater, Chem. Phys. Lipids, 1996, 81, 185 CrossRef CAS.
  32. R. M. Epand, Chem. Phys. Lipids, 1996, 81, 101 CrossRef CAS.
  33. J. A. Lundbaek, A. M. Maer and O. S. Andersen, Biochemistry, 1997, 36, 5695 CrossRef CAS.
  34. N. Dan, A. Berman, P. Pincus and S. A. Safran, J. Phys. II France, 1994, 4, 1713 Search PubMed.
  35. N. Dan and S. A. Safran, Isr. J. Chem., 1995, 35, 37 CAS.
  36. M. M. Kozlov, S. Leikin and R. P. Rand, Biophys. J., 1994, 67, 1603 CrossRef CAS.
  37. S. Leikin, M. M. Kozlov, N. L. Fuller and R. P. Rand, Biophys. J., 1996, 71, 2623 CrossRef CAS.
  38. S. McLaughlin, Curr. Top. Membr. Transport., 1977, 9, 71 Search PubMed.
  39. W. Helfrich, Z. Naturforsch., 1973, 28C, 693 Search PubMed.
  40. N. Fuller, personal communication.
Click here to see how this site uses Cookies. View our privacy policy here.