Sensing isothermal changes in the lateral pressure in model membranes using di-pyrenyl phosphatidylcholine

(Note: The full text of this document is currently only available in the PDF Version )

Richard H. Templer, Saffron J. Castle, A Rachael Curran, Garry Rumbles and David R. Klug


Abstract

In this work we present data from a homologous series of di-pyrenyl phosphatidylcholine (dipyPC) probes which can sense lateral pressure variations in the chain region of the amphiphilic membrane (lateral pressures are tangential to the interface). The dipyPC has pyrene moieties attached to the ends of equal length acyl chains on a phosphatidylcholine molecule. Ultraviolet stimulation produces both monomer and excimer fluorescence from pyrene. At low dilutions of dipyPC in model membranes the excimer signal is entirely intra-molecular and since it depends on the frequency with which the pyrene moieties are brought into close proximity, the relative intensity of the excimer to monomer signal, η, is a measure of the pressure. We synthesised or purchased dipyPC probes with the pyrene moieties attached to acyl chains having 4, 6, 8 and 10 carbon atoms and then measured η in fully hydrated bilayers composed of dioleoylphosphatidylcholine and dioleoylphosphatidylethanolamine (DOPC and DOPE respectively). Although the resolution of our measurements of lateral pressure as a function of distance into the monolayer was limited, we did observe a dip in the excimer signal in the region of the DOPC/DOPE cis double bond. As we isothermally increased the DOPE composition, and hence the desire for interfacial curvature, we observed, as expected, that the net excimer signal increased. However this net increase was apparently brought about by a transfer of pressure from the region around the glycerol backbone to the region near the chain ends, with the lateral pressure dropping above the cis double bond but increasing at a greater rate beyond the double bond.


References

  1. W. Helfrich, Z. Naturforsch., 1973, 28c, 693 Search PubMed.
  2. S. M. Gruner, Proc. Natl. Acad. Sci. USA, 1985, 82, 3665 CAS.
  3. J. M. Seddon, Biochim. Biophys. Acta, 1990, 1031, 1 CAS.
  4. G. Lindblom, A. Wieslander, M. Sjoelund, G. Wikander and A. Wieslander, Biochemistry, 1986, 25, 7502 CrossRef CAS.
  5. S. L. Keller, S. M. Bezrukov, S. M. Gruner, M. W. Tate, I. Vodyanoy and V. A. Parsegian, Biophys. J., 1993, 65, 23 CrossRef CAS.
  6. R. M. Epand, Chem. Phys. Lipids, 1996, 81, 101 CrossRef CAS.
  7. P. J. Booth, M. L. Riley, S. L. Flitsch, R. H. Templer, A. Farooq, A. R. Curran, N. Chadborn and P. Wright, Biochemistry, 1997, 36, 197 CrossRef CAS.
  8. G. S. Attard, R. H. Templer, W. S. Smith, A. N. Hunt and S. Jackowski, Nature, 1999, submitted Search PubMed; G. S. Attard, W. S. Smith, R. H. Templer, A. N. Hunt and S. Jackowski, Biochem. Soc. Trans., 1998, 26, 5230 Search PubMed.
  9. W. Helfrich, in Physics of defects, ed. R. Balian, M. Kléman and J. P. Poirier, North-Holland, Amsterdam, 1981, p. 715 Search PubMed.
  10. I. Szleifer, A. Benshaul and W. M. Gelbart, J. Phys. Chem., 1990, 94, 5081 CrossRef CAS.
  11. I. Szleifer, D. Kramer, A. Benshaul, W. M. Gelbart and S. A. Safran, J. Chem. Phys., 1990, 92, 6800 CrossRef CAS.
  12. I. Szleifer, D. Kramer, A. Benshaul, D. Roux and W. M. Gelbart, Phys. Rev. Lett., 1988, 60, 1966 CrossRef CAS.
  13. S. M. Gruner, M. W. Tate, G. L. Kirk, P. T. C. So, D. C. Turner, D. T. Keane, C. P. S. Tilcock and P. R. Cullis, Biochemistry, 1988, 27, 2853 CrossRef CAS.
  14. J. P. Birks, Photophysics of aromatic molecules, Wiley, London, 1970 Search PubMed.
  15. J. B. Birks and L. G. Christophorou, Proc. R. Soc. London, Ser. A, 1963, 274, 552 CAS.
  16. J. B. Birks, D. J. Dyson and I. H. Munro, Proc. R. Soc. London, Ser. A, 1963, 275, 575 CrossRef CAS.
  17. J. B. Birks and L. G. Christophorou, Proc. R. Soc. London, Ser. A, 1964, 277, 571 CAS.
  18. J. B. Birks, D. J. Dyson and T. A. King, Proc. R. Soc. London, Ser. A, 1964, 277, 270 CAS.
  19. J. B. Birks, M. D. Lumb and I. H. Munro, Proc. R. Soc. London, Ser. A, 1964, 280, 289 CAS.
  20. K. H. Cheng, L. Ruymgaart, L.-I. Liu, P. Somerharju and I. P. Sugár, Biophys. J., 1994, 67, 914 CAS.
  21. J. Sunamoto, H. Kondo, T. Nomura and H. Okamoto, J. Am. Chem. Soc., 1980, 102, 1146 CrossRef CAS.
  22. J. Sunamoto, T. Nomura and H. Okamoto, Bull. Chem. Soc. Jpn., 1980, 53, 2768 CAS.
  23. K. H. Cheng, S.-Y. Chen, P. Butko, B. W. Van Der Meer and P. Somerharju, Biophys. Chem., 1991, 39, 137 CrossRef CAS.
  24. P. Butko and K. H. Cheng, Chem. Phys. Lipids, 1992, 62, 39 CrossRef CAS.
  25. M. Sassaroli, M. Vaukhonen, P. Somerharju and S. Scarlata, Biophys. J., 1993, 64, 137 CrossRef CAS.
  26. S.-Y. Chen, K. H. Cheng and B. W. Van Der Meer, Biochemistry, 1992, 31, 3759 CrossRef CAS.
  27. Z. Chen and R. P. Rand, Biophys. J., 1997, 73, 267 CAS.
  28. M. Vaukhonen and P. Somerharju, Chem. Phys. Lipids, 1990, 52, 207 CrossRef.
  29. H. S. Henderson and P. N. Rauk, Anal. Biochem., 1981, 116, 553 CrossRef.
  30. G. Rumbles, unpublished data.
  31. J. Y. A. Lehtonen and P. K. J. Kinnunen, Biophys. J., 1981, 66, 1981.
  32. K. H. Madan, MSc thesis, Imperial College, London University, 1991.
  33. R. P. Rand, N. L. Fuller, S. M. Gruner and V. A. Parsegian, Biochemistry, 1990, 29, 76 CrossRef CAS.
  34. A. Ben-Shaul, personal communication.
  35. F. Reiss-Husson and V. Luzzati, J. Phys. Chem., 1964, 68, 3504 CAS.
  36. V. Luzzati and F. Husson, J. Cell. Biol., 1962, 12, 207 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.