Continuous flow methods for evaluating the response of a copper ion selective electrode to total and free copper in seawater

(Note: The full text of this document is currently only available in the PDF Version )

Ruth S. Eriksen, Denis J. Mackey, Peter Alexander, Roland De Marco and Xue Dong Wang


Abstract

This work describes the development of an instrument for measuring free and total copper in seawater by continuous flow analysis (CFA) with an Orion copper(II) ion selective electrode (CuISE). Sample analysis times are reduced considerably by using an extrapolation technique based on the fitting of an empirical mathematical expression to the electrode time-response curve enabling a prediction of the final equilibrium potential. CuISE measurements in seawater samples containing nanomolar levels of total copper can be very time consuming, and this predictive approach significantly reduces sample analysis time, and improves sample throughput. The time taken to measure pCu in seawater to a precision of ±0.1, using conventional potentiometry, varies considerably depending on the condition of the electrode membrane but can be reduced by a factor of 3-6 (typically from 60 to 10 min) by using the extrapolation technique in conjunction with CFA. Details are given of the protocols used for preconditioning the CuISE. The system can be used as a portable instrument for field measurements or for shipboard measurements of free copper in seawater. Extrapolated equilibrium potentials are within ±0.5 mV of true steady state values.


References

  1. A. G. Lewis and W. R. Cave, Oceanogr. Mar. Biol., 1982, 20, 471 Search PubMed.
  2. W. Sunda and R. R. L. Guillard, J. Mar. Res., 1976, 34, 511 Search PubMed.
  3. R. De Marco, Anal. Chem., 1994, 66, 3202 CrossRef CAS.
  4. R. De Marco, D. J. Mackey and A. Zirino, Electroanalysis, 1997, 9, 330 CAS.
  5. S. L. Belli and A. Zirino, Anal. Chem., 1993, 65, 2583 CrossRef CAS.
  6. P. W. Alexander, L. T. Di Benedetto, T. Dimitrakopoulos, D. B. Hibbert, J. C. Ngila, M. Sequeira and D. Shiels, Talanta, 1996, 43, 915 CrossRef CAS.
  7. L. T. Di Benedetto, P. W. Alexander and D. B. Hibbert, Anal. Chim. Acta, 1996, 321, 61 CrossRef.
  8. T. Dimitrakopoulos, P. W. Alexander, D. B. Hibbert, L. Cherksonand and J. Morgan, Electroanalysis, 1995, 7, 1118 CAS.
  9. D. J. Mackey and R. De Marco, Croat. Chim. Acta, 1997, 70, 207 Search PubMed.
  10. R. De Marco, Mar. Chem., 1996, 55, 389 CrossRef CAS.
  11. X. D. Wang, W. Shen, R. W. Cattrall, G. Nyberg and J. Liesegang, Electroanalysis, 1995, 7, 221 CAS.
  12. P. J. Watkins, Electroanalysis, 1997, 9, 85 CAS.
  13. J. Buffle and N. Parthasarathy, Anal. Chim. Acta, 1977, 93, 111 CrossRef CAS.
  14. R. H. Müller, Anal. Chem., 1969, 41, 113A.
  15. T. Dimitrakopoulos, Masters Thesis RMIT, Melbourne, 1994.
  16. D. J. Mackey, Mar. Chem., 1983, 14, 73 CAS.
  17. J. D. Allison, D. S. Brown and K. J. Novo-Gradac, in MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems, ed. US Environmental Protection Agency, Athens, GA, EPA/600/3-91/021, 1991 Search PubMed.
  18. J. Gulens, Ion-Sel. Electrode Rev., 1987, 9, 127 Search PubMed.
  19. W. J. van Oort and E. J. J. M. van Eerd, Anal. Chim. Acta, 1983, 155, 21 CrossRef CAS.
  20. J. Mertens, P. van den Winkel and D. l. Massart, Anal. Chem., 1976, 48, 272 CrossRef CAS.
  21. K. Toth, J. Fuckso, E. Lindner, Z. S. Feher and E. Pungor, Anal. Chim. Acta, 1986, 179, 359 CrossRef CAS.
  22. G. Pacey, D. Hollowell, K. Miller, M. Stratka and G. Gordon, Anal. Chim. Acta, 1986, 179, 259 CrossRef CAS.
  23. M. T. Neshkova, A. A. Kirkova, R. W. Cattrall, C. G. Gregorio and A. M. Bond, Anal. Chim. Acta, 1998, 362, 221 CrossRef CAS.
  24. R. De Marco, R. S. Eriksen and A. Zirino, Anal. Chem., 1998, 70, 4683 CrossRef CAS.
  25. E. Lindner, K. Toth and E. Pungor, Bunseki Kagaku, 1981, 30, 67.
Click here to see how this site uses Cookies. View our privacy policy here.