Cement for stabilisation of industrial residues containing heavy metals

(Note: The full text of this document is currently only available in the PDF Version )

Begoña Vallejo, Riansares Muñoz, Andrés Izquierdo and M. Dolores Luque de Castro


Abstract

A method aimed at decreasing the toxicity of heavy metals [namely, Zn(II) and Cr(III)] in real polluted residues by immobilisation has been developed. The residues were processed either with two cement-type stabilisers or lime. The cement-type stabilisers were Portland cement and Depocrete SM/2 at the self-generated pH (ca. 11) which afforded physical as well as chemical potential for the immobilisation of heavy metals. The other stabiliser, lime, reduced organic compounds, thus favouring the decrease of the chemical oxygen demand (COD) and endowing the residue with better mechanical properties for transport. After leaching the stabilised residues using the standard leaching test [Order 13/10/89, Boletín Oficial del Estado (BOE) 270 10/11/89], three ways for establishing the toxicity of the treated residues were used, namely: (1) the ecotoxicity test using Photobacterium phosphoreum (DIN 38 412); (2) determination of the concentration of heavy metals by atomic absorption spectrometry (AAS); (3) determination of the COD or oxygen required for complete chemical oxidation of a water sample. Portland cement (20%) blended with Depocrete SM/2 (3%) acted as an effective stabiliser for residues containing heavy metals as it increased the ecotoxicity index (EC50) by more than five times. Thus the heavy metal concentration in the leaching liquid was lowered to less than 0.1 mg l–1. The addition of 5% of lime afforded a residue easily transportable from the place of treatment to the landfill. The precision of the method was studied in terms of both repeatability and reproducibility. The values found with respect to EC50 and expressed as the relative standard deviation (RSD) were 1.6% and 5.1%, respectively.


References

  1. P. Cambier, Analusis Magazine, 1994, 22, M21 CAS.
  2. C. M. Davidson and A. L. Duncan, Anal. Chim. Acta, 1998, 363, 45 CrossRef.
  3. T. Taylor and B. S. Crannell, Environ. Sci. Technol., 1997, 31, 3330 CrossRef.
  4. B. Lothenbach, G. Furrer and R. Schulin, Environ. Sci. Technol., 1997, 31, 1452 CrossRef CAS.
  5. C. M. Lytle, F. W. Lytle, N. Yang, J. H. Qian, D. Hansen, A. Zayed and N. Terry, Environ. Sci. Technol., 1998, 32, 3087 CrossRef CAS.
  6. A. R. Pratt, D. W. Blowes and C. J. Ptacek, Environ. Sci. Technol., 1997, 31, 2492 CrossRef CAS.
  7. D. W. Blowes, C. J. Ptacek and J. L. Jambor, Environ. Sci. Technol., 1997, 31, 3348 CrossRef CAS.
  8. A. Bobrowski and J. Malolepszy, Environ. Sci. Technol., 1997, 31, 745 CrossRef CAS.
  9. A. Kindness, A. Macias and F. P. Glasser, Waste Management, 1994, 14, 3 Search PubMed.
  10. T. Korenaga and H. Ikatsu, Analyst, 1981, 106, 653 RSC.
  11. M. L. Balconi, M. Borgarello, F. Realini and R. Ferraroli, Anal. Chim. Acta, 1992, 261, 295 CrossRef CAS.
  12. Ministerio de la Presidencia, Luminescence Bioassay, Boletín Oficial del Estado, Madrid, 1989, Anexo 4, p. 35 220 Search PubMed.
  13. B. Lange, Operation Manual for Luminescent Bacteria Test with Lumistox, Gmb Berlin Industrience Technik, Dusseldorf, Edition 02/93, 1993, p. 1 Search PubMed.
  14. Ministerio de Obras Públicas y Urbanismo, Reglamento del Dominio Público Hidrá;ulico, Madrid, Real Decreto 849/1986, p. 419 Search PubMed.
  15. Association of Official Analytical Chemists, Official methods of Analysis, ed. K. Helrich, Arlington, Virginia, 15th edn., 1990, pp. 317–318 Search PubMed.
  16. B. Vallejo, A. Izquierdo and M. D. Luque de Castro, Analyst, 1999, 124, 1261 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.