Determination of N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC) in the general population using gas chromatography-mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Heiko U. Käfferlein and Jürgen Angerer


Abstract

Carbamoylation of glutathione, peptides and DNA is thought to be one of the most important reactions occurring in an organism after exposure to nitrosoureas, methylformamides or isocyanates. The carcinogenic effects of carbamoylation are not yet fully clarified. Although carbamoylation is known to occur after occupational exposure, it has never been reported in the general population. To clarify the situation, we investigated the levels of N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC) in urine samples from persons without occupational exposure using a sensitive and specific method (gas chromatography-mass spectrometry, GC-MS). AMCC is the degradation product of N-methylcarbamoylated glutathione. The clean-up procedure of urine samples includes two liquid-liquid extraction steps and solid phase extraction using a cation-exchange resin to separate AMCC from other urinary components. N,N-Dimethylpropionic acid amide (DMPA) is used as internal standard. During the preparation of the samples, AMCC is converted to ethyl-N-methylcarbamate (EMC) in the presence of anhydrous potassium carbonate (K2CO3) and ethanol. The reliability and accuracy of this method have been proven in detail. The relative standard deviation for the within-series imprecision for three different concentrations was determined to be between 10.9% and 14.3%, while the relative standard deviation for the between-day imprecision was between 11.3% and 14.8%. The mean recovery for AMCC was determined to be between 79.2% and 85.6%. The limit of detection for the simultaneous measurement of two fragment masses was 30 µg L–1. Using this GC-MS method, we analysed urine samples from 42 individuals of the general population in order to determine their urinary excretion of AMCC. It was identified in 40 samples. The mean concentration was 40 µg L–1. AMCC can be formed in two ways. The first possibility is the dietary intake of isothiocyanates, especially methyl isothiocyanate, which is a component of wine and cruciferous vegetables (such as cabbage, turnips and cress). During the metabolism of isothiocyanates in humans, the sulfur is partly exchanged for oxygen resulting in the formation of the corresponding isocyanate derivatives. The other possibility is the physiological formation of AMCC. In humans, this may occur via a two step process: carbamoylation and methylation, or vice versa. However, as AMCC was identified in about 95% of urine samples, and the standard deviation for the level of AMCC excreted was low, physiological formation seems to be the more probable pathway.


References

  1. J. H. Saunders and R. J. Slocombe, Chem. Rev., 1948, 43, 203 CrossRef CAS.
  2. L. A. Lea, Crit. Rev. Oncology/Haematology, 1987, 7, 329 Search PubMed.
  3. R. Preussmann, IARC Sci. Publ., 1986, 78, 223 Search PubMed.
  4. G. Eisenbrand, IARC Sci. Publ., 1984, 57, 695 Search PubMed.
  5. G. Eisenbrand, M. R. Berger, J. Fischer, M. R. Schneider, W. Tang and W. J. Zeller, Anticancer Drug Des., 1988, 4, 351 Search PubMed.
  6. J. L. Chen, W. E. Fayerweather and S. Pell, J. Occup. Med., 1988, 30, 813 Search PubMed.
  7. G. M. Calvert, J. M. Fajen, B. W. Hills and W. E. Halperin, Lancet, 1990, 336, 1253 CAS.
  8. J. Walrath, W. E. Fayerweather, P. G. Gilby and S. Pell, J. Occup. Med., 1989, 31, 432 Search PubMed.
  9. W. J. Gollins, Lancet, 1991, 337, 306 CAS.
  10. J. S. Abrams, N. Tait, H. Silva, M. Eisenberger, D. A. Van Echo, I. N. Olver and J. Aisner, Am. J. Clin. Oncol., 1989, 12, 41 CAS.
  11. O. Eton, D. E. Bajorin, E. S. Casper and A. N. Houghton, Invest. New Drugs, 1991, 9, 97 CAS.
  12. R. L. Cody, J. E. Seid and R. B. Natale, Invest. New Drugs, 1992, 10, 215 CAS.
  13. H. Cross, R. Dayal, R. Hyland and A. Gescher, Chem. Res. Toxicol., 1990, 3, 357 CrossRef CAS.
  14. R. Hyland, A. Gescher, K. Thummel, C. Schiller, P. Jheeta, K. Mynett, A. W. Smith and J. Mráz, Mol. Pharmacol., 1992, 41, 259 Search PubMed.
  15. D. H. Han, P. G. Pearson, T. A. Baillie, R. Dayal, L. H. Tsang and A. Gescher, Chem. Res. Toxicol., 1990, 3, 118 CrossRef CAS.
  16. A. Gescher, Chem. Res. Toxicol., 1993, 6, 245 CrossRef CAS.
  17. Z. Bardodej, H. Malonova and J. Mráz, J. Hyg. Epidemiol. Microbiol. Immunol., 1985, 29, 129 Search PubMed.
  18. J. Mráz and F. Turecék, J. Chromatogr., 1987, 414, 399 CAS.
  19. J. Angerer, T. Göen, A. Krämer and H. U. Käfferlein, Arch. Toxicol., 1998, 72, 309 CrossRef CAS.
  20. J. Mráz, E. Gálová, H. Nohová, S. Bousková and M. Hornychová, Oral presentation, in 4th International Symposium on Biological Monitoring in Occupational and Environmental Health, 23–25 September, 1998, Korean Industrial Health Association, Seoul, Korea, 1998, p. 125 Search PubMed.
  21. J. Mráz, E. Gálová, H. Nohová, S. Bousková, Poster presentation, in 4th International Symposium on Biological Monitoring in Occupational and Environmental Health, 23–25 September, 1998, Seoul, Korea, 1998, p. 147 Search PubMed.
  22. H. U. Käfferlein and J. Angerer, J. Chromatogr., B: Biomed. Appl., 1999, submitted Search PubMed.
  23. W. Stahl, R. L. Krauth-Siegel, R. H. Schirmer and G. Eisenbrand, IARC Sci. Publ., 1987, 84, 191 Search PubMed.
  24. N. S. Ningaraj, J. V. Schloss, T. D. Williams and M. D. Faiman, Biochem. Pharmacol., 1998, 55, 749 CrossRef CAS.
  25. V. Gadzheva, K. Ichimori, Z. Raikov and H. Nakazawa, Free Radic. Res., 1997, 27, 197 Search PubMed.
  26. B. W. Day, R. Jin and M. Karol, Chem. Res. Toxicol., 1996, 9, 568 CrossRef CAS.
  27. A. Casal-Lareo and L. Perbellini, Int. Arch. Occup. Environ. Health, 1995, 67, 47 CAS.
  28. J. Mráz, J. Chromatogr., B: Biomed. Appl., 1988, 431, 361 CrossRef.
  29. T. Sakai, H. Kageyama, T. Araki, T. Yosida, T. Kuribayashi and Y. Masuyama, Int. Arch. Occup. Environ. Health, 1995, 67, 125 CAS.
  30. J. G. Slatter, M. R. Davis, D. H. Han, P. G. Pearson and T. A. Baillie, Chem. Res. Toxicol., 1993, 6, 335 CrossRef CAS.
  31. J. G. Slatter, M. S. Rashed, P. G. Pearson, D. H. Han and T. A. Baillie, Chem. Res. Toxicol., 1991, 4, 157 CrossRef CAS.
  32. P. G. Pearson, J. G. Slatter, M. S. Rashed, D. H. Han and T. A. Baillie, Chem. Res. Toxicol., 1991, 4, 436 CrossRef CAS.
  33. H. E. Hurst, R. A. Kemper and N. Kurata, Biomed. Environ. Mass Spectrom., 1990, 19, 27 CAS.
  34. O. Suzuki, H. Hattori, J. Liu, H. Seno and T. Kumazawa, Forensic Sci. Int., 1990, 46, 169 CAS.
  35. B. J. Canas, F. L. Joe, G. W. Diachenko and G. J. Burns, J. Assoc. Off. Anal. Chem. Int., 1994, 77, 1530 Search PubMed.
  36. N. P. Sen, S. W. Seaman and D. Weber, Food Addit. Contam., 1992, 9, 149 CAS.
  37. P. Hagel, I. J. Gerding, W. Fieggen and H. Bloemendal, Biophys. Acta, 1971, 243, 366 Search PubMed.
  38. L. M. Kraus, M. R. Jones and A. P. Kraus, J. Lab. Clin. Med., 1998, 131, 425 CAS.
  39. J. Carreras, A. Chabás and D. Diederich, in: The Urea Cycle, ed. S. Grisolia, R. Báguena and F. Major, John Wiley, New York, 1976 Search PubMed.
  40. S. Clarke, Curr. Opin. Cell Biol., 1993, 6, 977 CrossRef.
  41. M. Törnqvist and A. Kautiainen, Environ. Health Perspect., 1993, 99, 39 CAS.