Determination of selected microbial volatile organic compounds by diffusive sampling and dual-column capillary GC-FID-a new feasible approach for the detection of an exposure to indoor mould fungi?

(Note: The full text of this document is currently only available in the PDF Version )

Katja Elke, Jutta Begerow, Hanna Oppermann, Ursula Kråmer, Erich Jermann and Lothar Dunemann


Abstract

A new, analytically valid procedure is described to assess the exposure of human beings to the so-called microbial volatile organic compounds (MVOCs) in air. The method can be used routinely for large sample numbers and is especially valuable as a basis for further research on the correlation between single MVOCs and indoor mould growth. The procedure is based on the fact that fungi produce a variety of volatile organic compounds, such as 3-methylbutan-1-ol, 3-methylbutan-2-ol, fenchone, heptan-2-one, hexan-2-one, octan-3-one, octan-3-ol, pentan-2-ol, α-terpineol, and thujopsene, which they emit into the indoor environment. Using diffusive samplers, these MVOCs are adsorbed onto charcoal during a sampling interval of four weeks. The described method is thus superior to existing methods which use short-term active sampling. After desorption with carbon disulfide, the MVOCs were determined by dual-column gas chromatography with flame ionization detection using the large-volume injection technique for sample introduction. The detection limits ranged between 0.15 and 0.53 µg m–3, within-series precision was found to range between 6.5 and 19.0%, and recovery was between 77 and 118%. The procedure has been sucessfully applied in the context of a large field study to measure the indoor MVOC exposure in children's rooms of 132 dwellings. The objective of the study was to examine the relation between indoor mould growth, the indoor MVOC exposure and the prevalence of adverse health effects. Information about mould formation has been obtained by a questionnaire and by the determination of colony forming units of mould fungi in mattress dust. With the exception of 3-methylbutan-2-ol, fenchone, nonan-2-one, octan-2-one, and thujopsene, indoor air concentrations of all MVOCs under investigation were significantly higher inside damp and mouldy dwellings. From the primary MVOCs under investigation, 3-methylbutan-1-ol, hexan-2-one, heptan-2-one, and octan-3-ol were found to be most reliable indicators for mould formation. A correlation was also found between selected MVOCs and the occurance of mould species in mattress dust. Aspergillus sp. correlated with heptan-2-one, hexan-2-one, octan-3-ol, octan-3-one, and α-terpineol, while the occurrance of Eurotium sp. was correlated with higher indoor air concentrations of 3-methylbutan-1-ol, 3-methylbutan-2-ol, heptan-2-one, hexan-2-one, octan-3-ol, and thujopsene. Children living in dwellings with elevated MVOC levels had a higher prevalence of asthma, hay fever, wheezing, and irritations of the eyes. These positive associations persisted after controlling for confounding factors such as age, sex, body-mass index, number of siblings, social status, passive smoking, type of heating, and ventilation habits. However, they were not statistically significant. This lack of significance may be a result of the small number of investigated samples.


References

  1. B. Flannigan, E. M. McCabe and F. McGarry, J. Appl. Bact. Symp., 1990, 70(Suppl.), 61S Search PubMed.
  2. S. Gravesen, Allergy, 1979, 34, 135 Search PubMed.
  3. R. S. Bernstein, W. G. Sorensen, D. Garabrant, C. Reaux and R. D. Treitman, Am. Ind. Hyg. Assoc. J., 1983, 44, 161 CrossRef CAS.
  4. H. Repp and D. Müller-Wening, Allergy, 1989, 12, 54 Search PubMed.
  5. J. Lacey and J. Dutkiewicz, J. Aerosol Sci., 1994, 24, 1371 CrossRef.
  6. S. D. Platt, C. J. Martin, S. M. Hunt and C. W. Lewis, Br. Med. J., 1989, 298, 1673 Search PubMed.
  7. J. D. Miller, Atmos. Environ., 1992, 26A, 2163 CAS.
  8. H. Beguin, Aerobiologia, 1995, 11, 3 Search PubMed.
  9. C. A. Hunter, C. Grant, B. Flannigan and A. F. Bravery, Int. Biodeterior., 1988, 24, 81 Search PubMed.
  10. A.-L. Pasanen, S. Lappalainen and P. Pasanen, Analyst, 1996, 121, 1949 RSC.
  11. B. Wessén and K.-O. Schoeps, Analyst, 1996, 121, 1203 RSC.
  12. S. Dewey, H. Sagunski, U. Palmgren and B. Wildeboer, Zbl. Hyg., 1995, 197, 504 Search PubMed.
  13. H. Sagunski, Umweltmed. Forsch. Prax., 1997, 2, 95 Search PubMed.
  14. D. Norbäck, I. Michel and J. Wildström, Scand. J. Work Environ. Health, 1990, 16, 121 Search PubMed.
  15. J. D. Miller, A. M. Laflamme, Y. Sobol, P. Lafontaine and R. Greenhalgh, Int. Biodeterior., 1988, 24, 103 Search PubMed.
  16. A.-L. Sunesson, C.-A. Nilsson, B. Anderson and G. Blomquist, Ann. Occup. Hyg., 1996, 40, 397 CrossRef CAS.
  17. R. Keller, R. Sönnichsen and H. Ohgke, Umweltmed. Forsch. Prax., 1997, 2, 265 Search PubMed.
  18. J. Bjurman, E. Nordstrand and J. Kristensson, Indoor Air, 1997, 7, 2 CrossRef CAS.
  19. A.-L. Pasanen, P. Kalliokoski, P. Pasanen, M. S. Jantunen and A. Nevelainen, Environ. Int., 1991, 17, 225 CrossRef.
  20. A.-L. Pasanen, P. Pasanen, M. J. Jantunen and P. Kalliokoski, Atmos. Environ., 1991, 25A, 459.
  21. T. O. Larsen and J. C. Frisvad, Mycol. Res., 1995, 99, 1153 CrossRef CAS.
  22. A.-L. Sunesson, W. H. J. Vaes, C.-A. Nilsson, G. Blomquist, B. Andersson and R. Carlson, Appl. Environ. Microbiol., 1995, 61, 2911 CAS.
  23. K. Wilkins and K. Larsen, Chemosphere, 1995, 31, 3225 CrossRef CAS.
  24. J. Bjurman and J. Kristensson, Mycopathologia, 1992, 118, 173 CAS.
  25. P. Pasanen, A. Korpi, P. Kalliokoski and A.-L. Pasanen, Environ. Int., 1997, 23, 425 CrossRef CAS.
  26. J. Begerow, E. Jermann, T. Keles, U. Ranft and L. Dunemann, Fresenius' J. Anal. Chem., 1995, 351, 549 CrossRef CAS.
  27. J. Begerow, E. Jermann, T. Keles, T. Koch and L. Dunemann, J. Chromatogr., A, 1996, 749, 181 CrossRef CAS.
  28. NIOSH manual of analytical methods, ed. P. M. Eller, DHHS (NIOSH) Publication, Cincinnati, OH, 3rd edn., 1984, vol. 1, pp. 84–100 Search PubMed.
  29. K.-H. Pannwitz, Drägerheft, 1983, 325, 1 Search PubMed.
  30. J. O. Hirschfelder, R. B. Bird and E. L. Spotz, Trans. Am. Soc. Mech. Eng., 1949, 71, 921 Search PubMed.
  31. S. T. Rodriguez, D. W. Gosselink and H. E. Mullins, Am. Ind. Hyg. Assoc. J., 1982, 3, 569 CrossRef.
  32. U. Krämer, H. Behrendt, U. Ranft, J. Ring and H. W. Schlipköter, Int. J. Epidemiol., in the press Search PubMed.
  33. M. I. Asher, U. Keil and H. R. Anderson, Eur. Resp. J., 1995, 8, 483 Search PubMed.
  34. F. Porstmann, J. Böke, S. Hartwig, R. Kaaden, R. Rosenlehner, A. Schupp, T. Stiller and H. E. Wichmann, Staub—Reinhalt. Luft, 1994, 54, 147 Search PubMed.
  35. H. C. Shields and C. J. Weschler, JAPCA, 1987, 37, 1039 Search PubMed.
  36. A.-L. Sunesson, C.-A. Nilsson and B. Andersson, J. Chromatogr., A, 1995, 699, 203 CrossRef CAS.
  37. W. J. Lautenberger, E. V. Kring and J. A. Morello, Am. Ind. Hyg. Assoc. J., 1989, 4, 737.
  38. M. A. Cohen, B. Ryan, Y. Yanagisawa and S. K. Hammond, J. Air Waste Manage., 1990, 40, 903 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.