Optimizing the removal of carbon phases in soils and sediments for sequential chemical extractions by coulometry

(Note: The full text of this document is currently only available in the PDF Version )

Michael K. Schultz, Steven R. Biegalski, Kenneth G. W. Inn, Lee Yu, William C. Burnett, Joylene L. W. Thomas and Gregory E. Smith


Abstract

We have developed a coulometric technique to optimize the removal of the carbonate and organic fractions for sequential chemical extractions of soils and sediments. The coulometric system facilitates optimizing these two fractions by direct real-time measurement of carbon dioxide (CO2) evolved during the removal of these two fractions. Further analyses by ICP-MS and alpha-spectrometry aided in interpreting the results of coulometry experiments. The effects of time, temperature, ionic strength and pH were investigated. The sensitivity of the coulometric reaction vessel/detection system was sufficient even at very low total carbon content (<0.1 mol kg–1). The efficiency of the system is estimated to be 96% with a standard deviation of 8%. Experiments were carried out using NIST Standard Reference Materials 4357 Ocean Sediment (OS), 2704 Buffalo River Sediment (BRS), and pure calcium carbonate. Carbonate minerals were dissolved selectively using an ammonium acetate-acetic acid buffer. Organic matter was then oxidized to CO2 using hydrogen peroxide (H2O2) in nitric acid. The carbonate fraction was completely dissolved within 120 min under all conditions examined (literature suggests up to 8 h). For the OS standard, the oxidation of organic matter self-perpetuates between 45 and 50 °C, a factor of two less than commonly suggested, while organic carbon in the BRS standard required 80 °C for the reaction to proceed to completion. For complete oxidation of organic matter, we find that at least three additions of H2O2 are required (popular methods suggest one or two).


References

  1. E. I. Hamilton and R. J. Clifton, Mar. Ecol. Prog. Ser., 1980, 3, 267 Search PubMed.
  2. S. R. Aston, D. J. Assinder, D. A. Stanners and J. E. Rae, Mar. Pollut. Bull., 1981, 12, 308 CAS.
  3. D. H. Oughton, B. Salbu, T. L. Brand, J. P. Day and A. Aarkrog, Analyst, 1993, 118, 1101 RSC.
  4. B. Salbu, T. Krekling, D. H. Oughton, G. Østby, V. A. Kashparov, T. L. Brand and J. P. Day, Analyst, 1994, 119, 125 RSC.
  5. S. B. Clark, W. H. Johnson, M. A. Malek, S. M. Serkiz and T. G. Hinton, Radiochim. Acta, 1996, 74, 173.
  6. A. Tessier, P. Campbell and M. Bisson, Anal. Chem., 1979, 51, 844 CrossRef CAS.
  7. T. T. Chao, J. Geochem. Explor., 1984, 20, 101 CAS.
  8. B. Collier, J. Dymonds, R. Conard and H. D. Holland, Geophys. Monogr., 1991, 63, 235 Search PubMed.
  9. W. M. Landing and B. L. Lewis, Geophys. Monogr., 1991, 63, 251 Search PubMed.
  10. K. C. Ruttenburg, Limnol. Oceanogr., 1992, 37, 1460 Search PubMed.
  11. M. K. Schultz, W. C. Burnett, K. G. W. Inn, J. W. L. Thomas and Z. Lin, J. Res. Natl. Inst. Stand. Technol., 1996, 101, 707 Search PubMed.
  12. M. K. Schultz, K. G. W. Inn, Z. C. Lin, W. C. Burnett, G. E. Smith, S. R. Biegalski and J. Filliben, Appl. Radiat. Isot., 1998, 49, 1289 CrossRef CAS.
  13. M. K. Schultz, W. C. Burnett and K. G. W. Inn, J. Environ. Radioact., 1998, 40, 155 CrossRef CAS.
  14. J. H. Schroeder, D. S. Miller and G. M. Friedman, J. Sediment Petrol., 1970, 40, 672 Search PubMed.
  15. P. M. Shanbag and J. W. Morse, Geochim. Cosmochim. Acta, 1982, 46, 241 CAS.
  16. W. P. Miller, D. C. Martens and L. W. Zelazny, Soil Sci. Soc. Am., 1986, 50, 598 Search PubMed.
  17. E. R. Sholkovitz, Geochim. Cosmochim. Acta, 1976, 40, 831 CAS.
  18. G. R. Choppin and B. E. Stout, Chem. Brit., 1991, 27, 1126 Search PubMed.
  19. J. A. Leenheer, G. K. Brown, P. MacCarthy and S. E. Cabaniss, Environ. Sci. Technol., 1998, 32, 2410 CrossRef CAS.
  20. J. U. Anderson, Clays Clay Miner., 1963, 10, 380 CAS.
  21. L. M. Lavkulich and J. H. Wiens, Soil Sci. Soc. Am. Proc., 1970, 34, 755 Search PubMed.
  22. L. M. Shuman, Soil Sci. Soc. Am., 1983, 47, 656 Search PubMed.
  23. R. G. McLaren and D. V. Crawford, J. Soil Sci., 1973, 24, 172 Search PubMed.
  24. A. L. Sanchez, J. W. Murray and T. H. Sibley, Geochim. Cosmochim. Acta, 1985, 49, 2297 CAS.
  25. E. W. D. Huffman, Microchem. J., 1977, 2, 567 CrossRef.
  26. C. R. Glenn, M. A. Arthur, H. W. Yeh and W. C. Burnett, Mar. Geol., 1988, 80, 287 CAS.
  27. C. Robinson and P. J. Williams, Mar. Chem., 1991, 34, 157 CAS.
  28. K. M. Johnson, K. D. Wills, D. B. Butler, W. K. Johnson and C. S. Wong, Mar. Chem., 1993, 44, 167 CAS.
  29. G. E. P. Box, W. G. Hunter and J. S. Hunter, Statistics for Experimenters: An Introduction to Design Analysis and Model Building, John Wiley and Sons, New York, NY, USA, 1978, pp. 534–582 Search PubMed.
  30. W. C. Burnett, D. R. Corbett and M. K. Schultz, 12th Waste Testing and Quality Assurance Symposium, Environmental Protection Agency/American Chemical Society, July 23–26, 1996, Washington, DC, USA, pp. 77–86 Search PubMed.
  31. K. G. W. Inn, Z. Lin and J. M. R. Hutchinson, Certificate, Standard Reference Material 4357—NIST Ocean Sediment, National Institute of Standards and Technology, Gaithersburg, MD, USA, 1996 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.