Iwao Sugimoto, Michiko Seyama and Masayuki Nakamura
Petroleum hydrocarbon vapors at low ppb levels can be detected using a thickness shear mode resonator (TSMR) coated with a chemical-sensing overlayer, prepared by radiofrequency sputtering of porous sintered-polyethylene (PS-PE). The sensing capabilities of PS-PE sensors were profoundly affected by the sputtering methods; they were enhanced by the photo-excitation effect, and were reduced by carbonization and water treatment. The photo-assisted PS-PE sensor was extremely sensitive and could detect linear hydrocarbon (>C12) vapors below the ppb level. The time constant of the sorption curve, however, was large, indicating a slow sensing speed. Toward creating instrumentation for a smart environmental monitoring system, the TSMR sensors were arrayed on a circuit board equipped with a serial interface and signal processing chips of the oscillation drive and frequency counter. Co-sorption with water vapor at a relative humidity of about 10% has almost no effect on the sensing ability of PS-PE sensors for 1,2,4-trimethylbenzene. Conversely, it enhances the sensitivity of the TSMR sensor coated with a D-phenylalanine film. Upward shifts in the baseline are evident with elapsed time. However, a rigorous ten-cycle iteration test for 100 ppm toluene vapor demonstrated good reproducibility of the sensor's signals.