The influence of geometry and draught shields on the performance of passive samplers

(Note: The full text of this document is currently only available in the PDF Version )

Peter Hofschreuder, Wobbe van der Meulen, Paul Heeres and Sjaak Slanina


Abstract

Passive samplers provide an excellent opportunity to perform indicative measurements or establish a dense network of measuring sites. A drawback compared with conventional active measuring methods is the larger spread of results. This variation can, to a large extent, be attributed to the influence of temperature, sampler geometry and wind on sampling results. A proper design of sampler geometry and optimum choice of draught shield can reduce the influence of wind velocity on a badge type sampler to less than 10%. Wire mesh screens prove to be inadequate in damping turbulence. Filters give good results. Attention should be paid to the size and isolation value of the walls of the sampler to prevent thermal updrafts occurring within the sampler. Tube type samplers are less influenced by wind, provided that turbulence is prevented from influencing diffusion within the sampler.


References

  1. R. van Aalst, L. Edwards, T. Pulles, E. de Saeger, M. Tombrou and D. Tonnesen, Guidance Report on Supplementary Assessment Under EC Air Quality Directives. Second Draft, European Commission, Brussels, 1997 Search PubMed.
  2. E. D. Palmes, A. F. Gunnison, J. Di Matteo and C. Tomczyk, Am. Ind. Hyg. Assoc. J., 1976, 37, 570 CAS.
  3. R. G. Lewis, J. D. Mulik, R. W. Coutant, G. W. Wooten and C. R. McMillin, Anal. Chem., 1985, 57, 214 CrossRef CAS.
  4. K. J. Hargreaves and D. H. F. Atkins, The Measurement of Ammonia in the Outdoor Environment Using Passive Diffusion Tube Samplers, Report AERE R 12568, Harwell Laboratory, Culham, 1987 Search PubMed.
  5. D. B. Orr, J. C. Hipfner, W. H. Chan, M. A. Lusis and J. E. Hunt, Atmos. Environ., 1987, 21, 1473 CAS.
  6. T. Hafkenscheid, Comments on Document CEN/TC 264/II n 50, 1998, (Concerning Correction for Pressure and Temperature for Passive Samplers), CEN/TC 264/WG11 N69, 1998 Search PubMed.
  7. J. L. Monteith and M. H. Unsworth, Principles of Environmental Physics, Edward Arnold, London, 1990 Search PubMed.
  8. P. Pérez Ballesta, E. G. Ferradas and A. M. Aznar, Environ. Sci. Technol., 1993, 27, 2031.
  9. Ambient Air Quality; Diffusive Samplers for the Determination of Gases and Vapours—Requirements and Test Methods, Part I. General Requirements, Draft Report, CEN/TC 264/WG11, 1998 Search PubMed.
  10. Ambient Air Quality; Diffusive Samplers for the Determination of Gases and Vapours—Requirements and Test Methods. Part 3. Guide for Selection, Use and Maintenance, Draft Report, CEN/TC 264/WG11, 1998 Search PubMed.
  11. R. H. Brown, Pure Appl. Chem., 1993, 65, 1859 CrossRef CAS.
  12. J. J. H. Willems and P. Hofschreuder, in A Passive Monitor for Measuring Ammonia, ed. I. Allegrini, A. Febo and C. Perrino. Air Pollution Research Report 37, 1991, CEC, Brussels, pp. 113–121 Search PubMed.
  13. G. P. Wyers, A. Wayers, J. J. Moels, Th. R. Thysse, J. H. Puyzer, H. L. M. Verhagen and J. W. Erioman, Karakterisering van de Regionale Concentratievelden van Ammoniak: Monstername en Meetstrategie, ECN Report C-95-109, 1995 Search PubMed.
  14. J. D. Posner and G. Moore, Am. Ind. Hyg. Assoc. J., 1985, 46, 277 CrossRef CAS.
  15. M. Kirchner, S. Braeutigam, M. Ferm, M. Haas, M. Hangartner, P. Hofschreuder, A. Kasper-Giebel, H. Roemmelt, J. Striedner, L. de Temmerman, W. Terzer, L. Thoeni, H. Werner and R. Zimmerling, to be published.
Click here to see how this site uses Cookies. View our privacy policy here.