Stability and storage problems in organotin speciation in environmental samples

(Note: The full text of this document is currently only available in the PDF Version )

J. L. Gómez-Ariza, I. Giráldez, E. Morales, F. Ariese, W. Cofino and Ph. Quevauviller


Abstract

The stability of both tributyltin (TBT) and triphenyltin (TPT) in water, sediment, oysters and cockles was studied over a period of 18 months using several storage conditions. Butyltins were stable in unacidified sea-water stored in polycarbonate bottles in the dark at 4 °C for 7 months, but half of the TBT concentration was lost after 540 d. A comparable preservation time was achieved for butyltins stored on C18 cartridges at room temperature. However, phenyltins extracted from sea-water were stable for only 60 d stored on cartridges and even more pronounced losses (about 90% after 540 d) occurred when they were stored in either polycarbonate or Pyrex glass bottles. Losses of organotins were observed in sediments after air drying and pasteurization treatments using a freeze-dried sediment as a comparator, whereas both butyltin and phenyltin species remained stable in sediments stored at –20 °C for the 18 months tested, irrespective of the treatment used for stabilization. Air drying followed by pasteurization was shown to be superior to other treatments for the stabilization of organotin compounds in sediments stored at higher temperatures, but 30% of TBT was lost after 540 d at 25 °C. Finally, butyltins were stable in both frozen cockles and oysters in the dark over a 7 month period and in freeze-dried samples stored at 4 °C for 5 months, but TBT losses of about 70% were observed after 540 d.


References

  1. C. Alzieu, Mar. Environ. Res., 1991, 32, 7 CrossRef.
  2. M. D. Stephenson, D. R. Smith, J. Goetz, G. Ichikawa and M. Martin, in Proceedings of the Organotin Symposium of the Oceans '86 Conference, Washington, DC, Marine Technology Society, 1986, p. 1246 Search PubMed.
  3. E. Oberdörster, D. Rittschof and P. McClellan-Green, Mar. Pollut. Bull., 1998, 36, 144 CrossRef CAS.
  4. J. Widdows and D. S. Page, Mar. Environ. Res., 1993, 35, 233 CAS.
  5. F. Pannier, A. Astruc and M. Astruc, Appl. Organomet. Chem., 1994, 8, 595 CAS.
  6. Ph. Quevauviller, Mikrochim. Acta, 1996, 123, 3 CAS.
  7. M. Abalos, J. M. Bayona, R. Compañó, M. Granados, C. Leal and M. D. Prat, J. Chromatagr., 1997, 788, 1 Search PubMed.
  8. K. Bergmann, U. Röhr and B. Neidhart, Fresenius' J. Anal. Chem., 1994, 349, 815 CAS.
  9. Ph. Quevauviller and Q. F. X. Donard, Fresenius' J. Anal. Chem., 1991, 339, 6 CrossRef CAS.
  10. J. L. Gómez-Ariza, E. Morales, R. Beltrán, I. Giráldez and M. Ruiz-Benítez, Quím. Anal., 1994, 13, s76–s79 Search PubMed.
  11. A. M. Caricchia, S. Chiavarini, C. Cremisini, R. Morabito and R. Scerbo, Anal. Chim. Acta, 1994, 286, 329 CrossRef CAS.
  12. Ph. Quevauviller, R. Morabito, L. Ebdon, W. Cofino, H. Muntau and M. J. Campbell, EUR Report, EN 17921, European Commission, Brussels, Belgium, 1997 Search PubMed.
  13. J. L. Gómez-Ariza, E. Morales and M. Ruiz-Benitez, Analyst, 1992, 117, 641 RSC.
  14. J. L. Gómez-Ariza, E. Morales and M. Ruiz-Benitez, Appl. Organomet. Chem., 1992, 6, 279 CAS.
  15. J. L. Gómez-Ariza, R. Beltran, E. Morales, I. Giráldez and M. Ruiz-Benitez, Appl. Organomet. Chem., 1994, 8, 553 CrossRef CAS.
  16. J. L. Gómez-Ariza, E. Morales, I. Giráldez and R. Beltrán, Inter. J. Environ. Anal. Chem., 1997, 66, 1 Search PubMed.
  17. J. L. Gómez-Ariza, E. Morales, I. Giráldez, R. Beltran and J. A. Pozas-Escobar, Fresenius' J. Anal. Chem., 1997, 357, 1007 CrossRef.
  18. J. A. Navío, C. Cerrillos, M. A. Pradera, E. Morales and J. L. Gómez-Ariza, Langmuir, 1998, 14, 388 CrossRef CAS.
  19. C. A. Dooley and V. Homer, Naval Oceans Systems Technical Report No. 197, 1983, San Diego Search PubMed.
  20. W. R. Blair, G. H. Olson, F. E. Brinckman, R. C. Paule and D. A. Becker, Natural Bureau of Standards, Gaithersburg, MD, 1986.