Evaluation of two adsorbents for diffusive sampling and thermal desorption-gas chromatographic analysis of monoterpenes in air

(Note: The full text of this document is currently only available in the PDF Version )

Anna-Lena Sunesson, Margit Sundgren, Jan-Olof Levin, Kåre Eriksson and Rolf Carlson


Abstract

Tube type samplers with two different adsorbents, Chromosorb 106 and Tenax TA, were evaluated by laboratory experiments and field tests for simultaneous diffusive sampling of α-pinene, β-pinene and Δ3-carene and subsequent thermal desorption-gas chromatographic analysis. No statistically significant effects of exposure time, concentrations of monoterpenes or relative humidity were found for samplers with Chromosorb 106 when running a factorial design, with the exception of the adsorption of Δ3-carene, for which some weak effects were noted. Samplers with Tenax TA were affected by the sampling time as well as the concentration for all terpenes, with a strong interaction effect between these two factors. The terpenes showed good storage stability on both adsorbents. No effect of back-diffusion was noted when using Chromosorb 106, while Tenax TA showed some back-diffusion effects. The uptake rates, in ml min–1, for the terpenes on Chromosorb 106 were 0.36 for α-pinene, 0.36 for β-pinene and 0.40 for Δ3-carene. The corresponding average values on Tenax TA were 0.30 for α-pinene, 0.32 for β-pinene and 0.38 for Δ3-carene. The field validation proved that diffusive sampling on Chromosorb 106 agreed well with pumped sampling on charcoal for stationary samples, while the personal samples indicated a discrepancy of 25% between Chromosorb 106 and charcoal samples. Tenax TA generally gave lower results than Chromosorb 106 in all field samples. Samplers packed with Chromosorb 106 could be used to monitor terpene levels in workplaces such as sawmills. The major advantages with this method are the sampling procedure, which is simple to perform compared to other techniques, the easily automated analysis procedure and the possibility to reuse the samplers.


References

  1. Diffusive Sampling. An Alternative Approach to Workplace Air Monitoring, ed. A. Berlin, R. H. Brown and K. J. Saunders, Royal Society of Chemistry, London, 1987 Search PubMed.
  2. J. O. Levin, in Clean Air at Work—New Trends in Assessment and Measurements for the 1990s, ed. R. H. Brown, M. Curtis, K. J. Saunders and S. Vandendrische, Royal Society of Chemistry, Cambridge, 1992, p. 135 Search PubMed.
  3. Workplace Atmospheres—Diffusive Samplers for the Determination of Gases and Vapours—Requirements and Test Methods, EN 838:1995, Comité Europeén de Normalisation, Brussels, 1995 Search PubMed.
  4. K. Eriksson and J. O. Levin, Chemosphere, 1995, 30, 1541 CrossRef CAS.
  5. K. Eriksson, J. O. Levin, M. Rhén and R. Lindahl, Analyst, 1994, 119, 85 RSC.
  6. R. van Wijk, J. Chromatogr. Sci., 1970, 8, 418 Search PubMed.
  7. J. Janák, J. Ruzicková and J. Novák, J. Chromatogr., 1974, 99, 689 CrossRef CAS.
  8. R. H. Brown and C. J. Purnell, J. Chromatogr., 1979, 178, 79 CrossRef CAS.
  9. G. MacLeod and J. M. Ames, J. Chromatogr., 1986, 355, 393 CrossRef CAS.
  10. K. Kawata and I. Kifune, Eisei Kagaku, 1991, 37, 281 Search PubMed.
  11. M. de Bortoli, H. Knöppel, E. Pecchio, H. Schauenburg and H. Vissers, Indoor Air, 1992, 2, 216 CrossRef CAS.
  12. R. J. B. Peters, A. D. V. Renesse and V. Duivenbode, Atmospheric Environment, 1994, 28, 2413 Search PubMed.
  13. J. H. Glover, Thermal Desorption in Industrial Hygiene and Environmental Analysis, Spantech Publishers, New Delhi, 1991 Search PubMed.
  14. R. H. Brown, Analyst, 1996, 121, 1171 RSC.
  15. W. Grimm and H. Gries, in Encyclopaedia of Occupational Safety and Health, ed. L. Parmeggiani, International Labour Organization, Geneva, 1983, p. 2229 Search PubMed.
  16. S. Hellerström, Acta Derm. Vener., 1939, 20, 657 Search PubMed.
  17. V. Pirilä and E. Siltanen, Dermatologia, 1958, 117, 1 Search PubMed.
  18. K. Eriksson, Occupational Exposure to Terpenes in Saw Mills and Joinery Shops, PhD Thesis, University of Umeå, 1996 Search PubMed.
  19. G. Hedenstierna, R. Alexandersson, K. Wimander and G. Rosén, Int. Arch. Occup. Environ. Health, 1983, 51, 191 CAS.
  20. K. Eriksson and J. O. Levin, Int. Arch. Occup. Environ. Health, 1990, 62, 479 CrossRef CAS.
  21. I. Andersson, A. Strömbäck, B. Järvholm, J. O. Levin, B. Strangert and A.-L. Sunesson, Appl. Occup. Environ. Hyg., submitted Search PubMed.
  22. J.-O. Levin, R. Lindahl and K. Andersson, Environ. Sci. Technol., 1986, 20, 1273 CAS.
  23. H. Wold, in Systems Under Indirect Observations, ed. K.-G. Jöreskog and H. Wold, North Holland, Amsterdam, 1982, vols. I, II, ch. 1 Search PubMed.
  24. R. Carlson, Design and Optimization in Organic Synthesis, Elsevier, Amsterdam, 1992, pp. 462–492 Search PubMed.
  25. D. L. Bartley, G. J. Deye and M. L. Woebkenberg, Appl. Ind. Hyg., 1987, 2, 119 Search PubMed.
  26. R. H. Brown, J. Charlton and K. J. Saunders, Am. Ind. Hyg. Assoc. J., 1981, 42, 865 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.