Spectroscopic and electrochemical examination of the dark and photo-catalysed redox reactions that occur at the interface between solid α-[Hex4N]4[S2Mo18O62], solid triphenylphosphine and water

(Note: The full text of this document is currently only available in the PDF Version )

John C. Eklund, Alan M. Bond, David G. Humphrey, Georgii Lazarev, Truc Vu, Anthony G. Wedd and Georg Wolfbauer


Abstract

Solid α-[Hex4N]4[S2Mo18O62] was found to be reduced by solid triphenylphosphine when the two species were ground together as powders and left for periods of several days in the presence of atmospheric water vapour. Electrospray mass spectrometry confirmed that the final product formed by oxidation of the phosphine was PPh3O, while experiments in the presence of H217O demonstrated that the oxygen source was atmospheric water vapour rather than [S2Mo18O62]4–. Voltammetry and UV/visible spectroscopy of samples of reacted solids dissolved in MeCN imply that the two-electron, two-proton reduced species [Hex4N]4[H2S2Mo18O62] was the major product formed upon reaction of an equimolar solid mixture of PPh3 and [Hex4N]4[S2Mo18O62]. The rate of this process is accelerated by irradiation with 300–400 nm light, corresponding to the wavelength of an absorption band of [S2Mo18O62]4–. When PPh3 was in excess, three-electron and four-electron reduced forms of [S2Mo18O62]4– were detected by EPR spectroscopy and voltammetry, respectively. Direct evidence for the photooxidation of PPh3 was obtained through solid-state photovoltammetric experiments in which a phototransient response for the oxidation of reduced forms of [S2Mo18O62]4– was recorded for solid state mixtures which were mechanically attached to a pyrolytic graphite electrode surface in contact with an aqueous medium.


References

  1. M. T. Pope and A. Muller, Angew. Chem., Int. Ed. Engl., 1991, 30, 34 CrossRef.
  2. M. T. Pope and A. Muller, Polyoxometalates: From Platonic Solids to Antiretroviral Activity, Kluwer, Dordrecht, 1994 Search PubMed.
  3. M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer, Berlin, 1983 Search PubMed.
  4. S. Himeno, T. Osakai and A. Saito, Bull. Chem. Soc., Jpn., 1989, 62, 1335 CAS.
  5. S. Himeno, T. Hori and A. Saito, Bull. Chem. Soc. Jpn., 1989, 62, 2184 CAS.
  6. S. Himeno, T. Osakai, A. Saito, K. Maeda and T. Hori, J. Electroanal. Chem. Interfacial Electrochem., 1992, 337, 371 CrossRef CAS.
  7. S. Himeno, K. Maeda, T. Osakai, A. Saito and T. Hori, Bull. Chem. Soc. Jpn., 1993, 66, 109 CAS.
  8. J. B. Cooper, D. M. Way, A. M. Bond and A. G. Wedd, Inorg. Chem., 1993, 32, 2416 CrossRef CAS.
  9. K. Maeda, S. Himeno, T. Osakaii, A. Saito and T. Hori, J. Electroanal. Chem. Interfacial Electrochem., 1994, 364, 149 CrossRef CAS.
  10. D. M. Way, A. M. Bond and A. G. Wedd, Inorg. Chem., 1997, 36, 2826 CrossRef CAS.
  11. D. M. Way, J. B. Cooper, M. Sadik, T. Vu, P. J. Mahon, A. M. Bond, R. T. C. Brownlee and A. G. Wedd, Inorg. Chem., 1997, 36, 4227 CrossRef CAS; erratum: 1998, 37, 604.
  12. C. L. Hill and C. M. Prosser-McCartha, Coord. Chem. Rev., 1995, 143, 407 CrossRef CAS.
  13. T. Yamase, J. Electrochem. Soc., 1993, 140, 2378 CAS.
  14. T. Yamase and K. Ohtaka, J. Chem. Soc., Dalton Trans., 1994, 2599 RSC.
  15. T. Yamase, Chem. Rev., 1998, 98, 307 CrossRef CAS.
  16. A. M. Bond, D. M. Way, A. G. Wedd, R. G. Compton, J. Booth and J. C. Eklund, Inorg. Chem., 1995, 34, 3378 CrossRef CAS.
  17. A. M. Bond, J. C. Eklund, V. Tedesco, T. Vu and A. G. Wedd, Inorg. Chem., 1998, 37, 2366 CrossRef CAS.
  18. R. Neier, C. Trojanowski and R. Mattes, J. Chem. Soc., Dalton Trans., 1995, 2521 RSC.
  19. A. M. Bond, R. Colton, F. Daniels, D. R. Fernando, F. Marken, Y. Nagaosa, R. F. M. Van Steveninck and J. N. Walter, J. Am. Chem. Soc., 1993, 115, 9556 CrossRef CAS.
  20. A. M. Bond and F. Marken, J. Electroanal. Chem. Interfacial Electrochem., 1994, 372, 125 CrossRef CAS.
  21. S. J. Shaw, F. Marken and A. M. Bond, J. Electroanal. Chem. Interfacial Electrochem., 1996, 404, 227 CrossRef CAS.
  22. A. M. Bond, J. B. Cooper, F. Marken and D. M. Way, J. Electroanal. Chem. Interfacal Electrochem., 1995, 396, 407 Search PubMed.
  23. A. M. Bond and J. C. Eklund, J. Am. Chem. Soc., 1999, 121, 8306 CrossRef CAS.
  24. M. I. Montenegro, Res. Chem. Kin., 1994, 2, 299 Search PubMed.
  25. N. Casan-Pastor and L. C. W. Baker, J. Am. Chem. Soc., 1992, 114, 10384 CrossRef and refs. therein.
  26. P. W. Atkins, D. F. Shriver and C. H. Langford, Inorganic Chemistry, OUP, Oxford, 1990 Search PubMed.
  27. A. J. Fry, Laboratory Techniques in Electroanalytical Chemistry, eds. P. T. Kissinger and W. R. Heineman, Marcel Dekker, New York, 1996, Ch. 15 Search PubMed.
  28. N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877 CrossRef CAS.
  29. C. Moinet and P. Peltier, Bull. Soc. Chim. Fr., 1969, 690 CAS.
  30. A. J. Fry, Synthetic Organic Electrochemistry, Wiley, New York, 1989, pp. 320–325 Search PubMed.
  31. J. E. Wertz and J. R. Bolton, Electron Spin Resonance. Elementary Theory and Practical Applications, McGraw-Hill, New York, 1972, p. 464 Search PubMed.
  32. C. M. Duff and G. A. Heath, Inorg. Chem., 1991, 30, 2528 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.