Ferroxime(II)-catalysed oxidation of 3,5-di-tert-butylcatechol by O2. Kinetics and mechanism[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Tatiana L. Simándi and László I. Simándi


Abstract

The complex [Fe(Hdmg)2(MeIm)2] 1, referred to as ferroxime(II), was found to be the precursor of a selective catalyst for the oxidative dehydrogenation of 3,5-di-tert-butylcatechol (H2dbcat) to the corresponding 1,2-benzoquinone (dtbq) at room temperature and atmospheric dioxygen pressure. The observed kinetic behaviour in MeOH is consistent with solvolysis of one MeIm ligand and binding of dioxygen to the five-co-ordinate intermediate to form a superoxo complex. The latter abstracts an H atom from H2dbcat via a hydrogen-bonded ternary active intermediate, affording the semiquinone anion radical dbsq˙– and [FeIII(Hdmg)2(MeIm)(O2H)]. Utilising an electron and a proton from H2dbcat, the latter undergoes heterolytic cleavage to yield a ferryl species, which rapidly oxidises a second H2dbcat. Complexation of dbsq˙– with [FeII(Hdmg)2(MeIm)] affords a strongly coloured paramagnetic species [FeII(Hdmg)2(MeIm)(dbsq˙–)], which persists throughout the catalytic reaction, acting as buffer for dbsq˙–. The proposed mechanism involves steps similar to those of the known cytochrome P450 cycle, with H2dbcat acting as both ancillary electron source and substrate.


References

  1. L. Que, Jr., Coord. Chem. Rev., 1983, 50, 73 CrossRef; in Bioinorganic Catalysis, ed. J. Reedijk, Marcel Dekker, New York, 1993, pp. 347–393 Search PubMed; C. G. Pierpont and C. W. Lange, Prog. Inorg. Chem., 1994, 41, 331 Search PubMed; L. I. Simándi, Catalytic Activation of Dioxygen by Metal Complexes, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992, ch. 6 CAS; T. Funabiki, in Oxygenases and Model Systems, ed. T. Funabiki, Kluwer Academic Publishers, Dordrecht, Boston, London, 1997, pp. 19–104, 105–156 CAS.
  2. D. Mansuy and P. Battioni, in Bioinorganic Catalysis, ed. J. Reedijk, Marcel Dekker, New York, 1993, p. 395 Search PubMed.
  3. Metalloporphyrins in Catalytic Oxidation, ed. R. A. Sheldon, Marcel Dekker, New York, 1994 Search PubMed.
  4. H. Noglik, D. W. Thompson and D. V. Stynes, Inorg. Chem., 1991, 30, 4571 CrossRef CAS.
  5. I. Vernik and D. V. Stynes, Inorg. Chem., 1996, 35, 1093 CrossRef CAS.
  6. H. E. Toma and A. C. C. Silva, Can. J. Chem., 1986, 64, 1280 CAS.
  7. (a) L. I. Simándi, T. Barna, L. Korecz and A. Rockenbauer, Tetrahedron Lett., 1993, 34, 717 CrossRef CAS; (b) L. I. Simándi, T. Barna, Gy. Argay and T. L. Simándi, Inorg. Chem., 1995, 34, 6337 CrossRef CAS; (c) L. I. Simándi, T. Barna and S. Németh, J. Chem. Soc., Dalton Trans., 1996, 473 RSC; (d) L. I. Simándi and T. L. Simándi, J. Mol. Catal. A: Chemical, 1997, 117, 299 CrossRef CAS; (e) L. I. Simándi and T. L. Simándi, J. Chem. Soc., Dalton Trans., 1998, 3275 RSC.
  8. I. W. Pang and D. V. Stynes, Inorg. Chem., 1977, 16, 590 CrossRef CAS.
  9. X. Chen and D. V. Stynes, Inorg. Chem., 1986, 25, 1173 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.