Molecular dynamics and free energy perturbation studies of Ca2+/Sr2+ complexation selectivities of the macrocyclic ionophores DOTA and TETA in water

(Note: The full text of this document is currently only available in the PDF Version )

Alexandre Varnek, Georges Wipff, Alex Bilyk and Jack M. Harrowfield


Abstract

Molecular dynamics simulations have been performed on the uncomplexed tetraanionic macrocyclic ionophores DOTA I and TETA II and on their complexes with Ca2+ and Sr2+ cations in the gas phase and in water. We have found that for both ligands, the most stable complex is the one where the cation is completely encapsulated in a pseudocavity formed by four nitrogens and four oxygens (one per carboxylate group). All stereoisomers for this type of complex have similar coordination and hydration patterns. Water molecules do not coordinate to the cation when it is encapsulated by the ligand but form hydrogen bonds with non-coordinating carboxylic oxygens, leading to repulsive interactions with the cation. The higher binding affinity of I compared to II for Ca2+ is explained by better preorganization of I for complexation. Free energy perturbation simulations performed on I·M2+ and II·M2+ complexes show that the preference of both ligands for Ca2+ over Sr2+ in water results from their higher intrinsic binding affinities for Ca2+ rather than the difference between hydration energies of the uncomplexed cations.


References

  1. J.-F. Desreux, Inorg. Chem., 1980, 19, 1319 CrossRef CAS.
  2. M. R. Spirlet, J. Rebizant, J.-F. Desreux and M. F. Loncin, Inorg. Chem., 1984, 23, 359 CrossRef CAS.
  3. M. F. Loncin, J.-F. Desreux and E. Merciny, Inorg. Chem., 1986, 25, 2646 CrossRef CAS.
  4. V. Alexander, Chem. Rev., 1995, 95, 273 CrossRef CAS provides a brief overview.
  5. M. F. Tweedie, in Lanthanide Probes in Life, Chemical and Earth Sciences, ed. G. R. Choppin and J.-C. G. Bünzli, Elsevier, New York, 1989, ch. 3 Search PubMed.
  6. C. A. Chang, L. C. Francesconi, M. F. Malley, K. Kumar, J. Z. Gougoutas, M. F. Tweedie, D. W. Lee and L. J. Wilson, Inorg. Chem., 1993, 32, 3501 CrossRef CAS.
  7. K. Kumar, C. A. Chang, L. C. Francesconi, D. D. Dischino, M. F. Malley, J. Z. Gougoutas and M. F. Tweedie, Inorg. Chem., 1993, 33, 3567 and references therein.
  8. D. E. Reichert, J. S. Lewis and C. J. Anderson, Coord. Chem. Rev., 1999, 184, 3 CrossRef CAS.
  9. S. Aime, M. Botta, M. Fasano, M. P. M. Maques, C. F. G. C. Geraldes, D. Pubanz and A. E. Merbach, Inorg. Chem., 1997, 36, 2059 CrossRef CAS.
  10. R. S. Dickens, J. A. K. Howard, C. L. Maupin, J. M. Moloney, D. Parker, R. D. Peacock, J. P. Riehl and G. Siligardi, New J. Chem., 1998, 891 RSC.
  11. S. Aime, A. Barge, J. Bruce, M. Botta, J. A. K. Howard, J. M. Moloney, D. Parker, A. S. de Sousa and M. Woods, J. Am. Chem. Soc., 1999, 121, 5762 CrossRef CAS.
  12. R. B. Martin and F. S. Richardson, Quart. Rev. Biochem., 1979, 12, 181 Search PubMed.
  13. J.-C. G. Bünzli, in Lanthanide Probes in Life, Chemical and Earth Sciences, ed. G. R. Choppin and J.-C. G. Bünzli, Elsevier, New York, 1989, ch. 7, pp. 21 Search PubMed.
  14. S. L. Wu, K. A. Johnson and W. deW. Horrocks, Inorg. Chem., 1997, 36, 1884 CrossRef CAS.
  15. H. Stetter and W. Frank, Angew. Chem., Int. Ed. Engl., 1976, 15, 686 CrossRef.
  16. W. P. Cacheris, S. K. Nickle and A. D. Sherry, Inorg. Chem., 1987, 26, 958 CrossRef CAS.
  17. R. Delgado and J. J. R. Frausto da Silva, Talanta, 1982, 29, 815 CrossRef CAS.
  18. (CSD Refcode) CEXKUL, Na[Eu(DOTA)(OH2)]·4H2O (Ref. 2); JOPJIH01, Na[Gd(DOTA)(OH2)]·4H2O (Ref. 6)); LATKOG, Na[Y(DOTA)(OH2)]·4H2O (Ref. 6); LATKAS, Na[Fe(DOTA)]·5H2O (Ref. 6); ZUGTAX, [Ca(OH2)3]2[Ca(DOTA)]2·15.4H2O (Ref. 34).
  19. U. Cosentino, G. Moro, D. Pitea, A. Villa, P. C. Fantucci, A. Maiocchi and F. Uggeri, J. Phys. Chem. A, 1998, 102, 4606 CrossRef CAS.
  20. J. H. Forsberg, R. M. Delaney, Q. Zhao, G. Harakas and R. Chandran, Inorg. Chem., 1995, 34, 3705 CrossRef CAS and references therein.
  21. C. Lecomte, V. Dahaoui-Gindrey, H. Chollet, C. Gros, A. K. Mishra, F. Barbette, P. Pullumbi and R. Guilard, Inorg. Chem., 1997, 36, 3827 CrossRef CAS and references therein.
  22. R. Fossheim and S. G. Dahl, Acta Chem. Scand., 1990, 44, 698 CAS.
  23. R. Fossheim, S. G. Dahl and H. Dugstad, Eur. J. Med. Chem., 1991, 26, 200 CrossRef CAS.
  24. R. Fossheim, H. Dugstad and S. G. Dahl, J. Med. Chem., 1991, 34, 819 CrossRef CAS.
  25. D. E. Reichert, R. D. Hancock and M. J. Welch, Inorg. Chem., 1996, 35, 7013 CrossRef CAS.
  26. D. A. Pearlman, D. A. Case, J. C. Caldwell, W. S. Ross, T. E. Cheatham III, D. M. Ferguson, G. L. Seibel, U. C. Singh, P. K. Weiner and P. A. Kollman, AMBER4.1, University of California, CA, 1995.
  27. S. J. Weiner, P. A. Kollman, D. T. Nguyen and D. A. Case, J. Comput. Chem., 1986, 7, 230 CrossRef CAS; W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, J. Am. Chem. Soc., 1995, 117, 5179 CrossRef CAS.
  28. SPARTAN, Version 4.1, Wavefunction Inc., Irvine, CA, 1996.
  29. R. V. Stanton, L. R. Little and K. M. Merz, J. Phys. Chem., 1995, 99, 483 CrossRef CAS.
  30. Energy minimization of I and its type 1 complexes with Ca2+ and Sr2+ were performed using hybrid quantum mechanics/molecular mechanics (QM/MM) method29 using the ROAR program.50 In these calculations, for the ligand we used PM3 semi-empirical method,51 whereas cations were treated classically, as in purely force field calculations, using the AMBER4 force field26 to estimate its non-bonded interactions with the ligand. In such a way, there is no charge transfer from the ligand but polarization of the latter in the field of the cation was taken into account; In the uncomplexed tetraanion I the negative Mulliken charges on the oxygen atoms (–0.67) are larger than on the N atoms (–0.07). In the I·M2+ complexes, the cation induces some changes in the charge distribution of the ligand. The charges on the carboxylic oxygens become different (–0.77 on the atoms coordinating to M2+ and –0.57 on non-coordinating atoms) although their average value remains the same as in the uncomplexed I. The negative Mulliken charges on nitrogens increase to –0.14. Thus, polarization effects diminish the difference between the average charges on O and N atoms and qualitatively, at least, this corresponds to the modications made on the initial set of ESP charges reported in the section Fitting of parameters.
  31. S. Durand, Simulations par mécanique quantique et dynamique moléculaire de la complexation de cations alcalino-terreux et lanthanides par des ligands polyaminocarboxylate, Doctoral Thesis, Strasbourg, 1999 Search PubMed.
  32. J. Åqvist, J. Phys. Chem., 1990, 94, 8021 CrossRef.
  33. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher and B. Roux, J. Phys. Chem. B, 1998, 102, 3586 CrossRef CAS.
  34. O. P. Andersen and J. H. Reibenspies, Acta Crystallogr., Sect. C, 1996, 52, 792 CrossRef.
  35. MacroModel 5.5, Columbia University, New York, 1996.
  36. M.-R. Spirlet, J. Rebizant, M.-F. Loncin and J.-F. Desreux, Inorg. Chem., 1984, 23, 4278 CrossRef CAS.
  37. A. Riesen, M. Zehnder and T. A. Kaden, Acta Crystallogr., Sect. C, 1991, 47, 531 CrossRef.
  38. D. Q. McDonald and W. C. Still, J. Am. Chem. Soc., 1994, 116, 11550 CrossRef CAS.
  39. J. R. Morrow, S. Amin, C. H. Lake and M. R. Churchill, Inorg. Chem., 1993, 32, 4566 CrossRef CAS.
  40. W. L. Jorgensen, J. Chandrasekhar and J. D. Madura, J. Chem. Phys., 1983, 79, 926 CrossRef CAS.
  41. U. C. Singh, F. K. Brown, P. A. Bash and P. A. Kollman, J. Am. Chem. Soc., 1987, 109, 1607 CrossRef CAS.
  42. A. Varnek, E. Engler, M. Lauterbach, L. Troxler and G. Wipff, in Crystallography of Supramolecular Compounds, ed. G. Tsoucaris, J. L. Atwood and J. Lipkowski, NATO ASI Ser., Dordrecht, Boston, London, 1996, pp. 465–470 Search PubMed.
  43. P. Kollman, Chem. Rev., 1993, 93, 2395 CrossRef CAS.
  44. R. Delagado, J. J. R. Frausto da Silva and M. C. T. A. Vaz, Inorg. Chim. Acta, 1984, 90, 185 CrossRef CAS.
  45. Y. Inoue, Y. Liu and T. Hakushi, in Cation Binding by Macrocycles, ed. Y. Inoue and G. W. Gokel, Marcel Dekker, Inc., N Y, Basel, 1990, pp. 1–110 Search PubMed.
  46. Y. Inoue, T. Hakushi, Y. Liu, L.-H. Tong, B.-J. Shen and D.-S. Jin, J. Am. Chem. Soc., 1993, 115, 475 CrossRef CAS.
  47. A. Y. Tsivadze, A. A. Varnek and V. E. Khutorsky, Coordination Compounds of Metals with Crown-Ligands (Russ.), Moscow, 1991 Search PubMed.
  48. E. J. Corey and J. C. Bailar, J. Am. Chem. Soc., 1959, 81, 2620 CrossRef CAS.
  49. J. K. Beattie, Acc. Chem. Res., 1971, 4, 253 CrossRef CAS.
  50. A. Cheng, R. S. Stanton, J. J. Vincent, K. V. Domodaran, S. L. Dixon, D. S. Hartsough, M. Mori, S. A. Best and K. M. Merz, ROAR 1.0 program, Pennsylvania State University, 1997.
  51. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.