Synthesis and molecular structures of N,N-dimethylhydroxylamino-trichlorosilane and -germane[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Udo Losehand, Norbert W. Mitzel and David W. H. Rankin


Abstract

The compounds Cl3SiONMe2 and Cl3GeONMe2 have been prepared by reacting HONMe2 with SiCl4 and GeCl4, respectively, in the presence of the auxiliary base 2,6-dimethylpyridine. Their identity was proven by gas-phase IR and solution NMR spectroscopy of the nuclei 1H, 13C, 15N, 17O, 29Si, by mass spectrometry and elemental analyses. The solid-state structure of Cl3SiONMe2 was determined by low-temperature X-ray crystallography. The molecular structures of Cl3SiONMe2 and Cl3GeONMe2 in the gas phase have been determined by analysis of electron diffraction data augmented by restraints derived from ab initio calculations (MP2/6-31G*). The molecules adopt Cs symmetry. Important gas-phase geometry parameter values for Cl3SiONMe2 are: Si–O 1.623(3), Si–Clin-plane 2.022(4), Si–Clout-of-plane 2.024(2), O–N 1.479(6) Å, Si–O–N 105.6(8), O–Si–Clin-plane 104.2(3), O–Si–Clout-of-plane 113.7(2)°, for Cl3GeONMe2: Ge–O 1.759(6), Ge–Clin-plane 2.104(4), Ge–Clout-of-plane 2.106(2), O–N 1.484(9) Å, Ge–O–N 104.0(11), O–Ge–Clin-plane 108.9(20), O–Ge–Clout-of-plane 111.6(12)°. The structural data are interpreted in terms of weak attractive interactions between the nitrogen donor and the silicon/germanium acceptor atoms. The results are discussed in comparison with other structural data from the literature: the donor–acceptor interaction in Cl3SiONMe2 is weaker than those in H3SiONMe2 or ClH2SiONMe2, but stronger than that in Me3SiON(CF3)2. Both compounds reveal stronger donor–acceptor interactions than the methyl analogues Me3SiONMe2.


References

  1. (a) R. R. Holmes, Chem. Rev., 1990, 90, 17 CrossRef CAS; (b) C. Chuit, R. J. P. Corriu, C. Reyé and J. C. Young, Chem. Rev., 1993, 93, 1371 CrossRef CAS.
  2. R. Tacke, D. Reichel, M. Kropfgans, P. G. Jones, E. Mutschler, J. Gross, X. Hou, M. Waeldbrock and G. Lambrecht, Organometallics, 1995, 14, 251 CrossRef CAS.
  3. (a) M. G. Voronkov, V. M. Dyakov and S. V. Kirpichenko, J. Organomet. Chem., 1982, 233, 1 CrossRef CAS; (b) M. W. Schmidt, T. L. Windus and M. S. Gordon, J. Am. Chem. Soc., 1995, 117, 7480 CrossRef CAS.
  4. N. W. Mitzel, U. Losehand and A. Richardson, Organometallics, 1999, 18, 2610 CrossRef CAS.
  5. N. W. Mitzel and U. Losehand, Angew. Chem., Int. Ed. Engl., 1997, 36, 2807 CrossRef CAS.
  6. N. W. Mitzel and U. Losehand, J. Am. Chem. Soc., 1998, 120, 7320 CrossRef CAS.
  7. P. Nowakovski and R. West, J. Am. Chem. Soc., 1976, 98, 5616 CrossRef.
  8. Y. Hamada and S. Mori, Proceedings of the 29th Organosilicon Symposium, Evanston, IL, March 1996 Search PubMed.
  9. R. A. Murphy, Fr. Pat., 1462725, 1966; Chem. Abstr., 1967, 67, 54258 Search PubMed.
  10. M. G. Voronkov, E. A. Maletina and V. K. Roman, Heterosiloxanes Vol. 2, Derivatives of Nitrogen and Phosphorus, Harwood Academic Publishers GmbH, Chur, Switzerland, 1991 Search PubMed.
  11. (a) M. G. Voronkov, V. P. Feshin, V. F. Mironov, S. A. Mikhailyants and T. K. Gar, Zh. Obshch. Khim., 1971, 41, 2211 CAS; (b) M. G. Voronkov, T. V. Kashik, E. Y. Lukevits, E. S. Deriglazova, A. E. Pestunovich and R. Y. Moskovich, Zh. Obshch. Khim., 1974, 44, 2211.
  12. N. W. Mitzel, C. Kiener and D. W. H. Rankin, Organometallics, 1999, 18, 3437 CrossRef CAS.
  13. (a) K. Wieghard, I. Tolksdorf, J. Weiss and W. Swiridoff, Z. Anorg. Allg. Chem., 1982, 490, 182 CrossRef CAS; (b) N. W. Mitzel, S. Parsons, A. J. Blake and D. W. H. Rankin, J. Chem. Soc., Dalton Trans., 1996, 2089 RSC.
  14. T. Hertel, J. Jakob, R. Minkwitz and H. Oberhammer, Inorg. Chem., 1998, 37, 5092 CrossRef CAS.
  15. R. Wolfgramm, U. Klingebiel and M. Noltemeyer, Z. Anorg. Allg. Chem., 1998, 624, 856.
  16. U. Losehand and N. W. Mitzel, Eur. J. Inorg. Chem., 1998, 2023 CrossRef CAS.
  17. (a) A. J. Blake, P. T. Brain, H. McNab, J. Miller, C. A. Morrison, S. Parsons, D. W. H. Rankin, H. E. Robertson and B. A. Smart, J. Phys. Chem., 1996, 100, 12280 CrossRef CAS; (b) N. W. Mitzel, B. A. Smart, A. J. Blake, H. E. Robertson and D. W. H. Rankin, J. Phys. Chem., 1996, 100, 9339 CrossRef CAS.
  18. L. S. Bartell, D. J. Romenensko and T. C. Wong, Mol. Struct. Diffr. Methods, 1975, 3, 72 Search PubMed.
  19. V. J. Klimkowski, J. D. Ewbank, C. Van Alsenoy, J. N. Scarsdale and L. Schäfer, J. Am. Chem. Soc., 1982, 104, 1476 CrossRef CAS.
  20. (a) W. Airey, C. Glidewell, A. G. Robiette and G. M. Sheldrick, J. Mol. Struct., 1971, 8, 413 CrossRef CAS; (b) M. Yokoi, Bull. Chem. Soc. Jpn., 1957, 30, 100 CAS; (c) K. Yamasaki, A. Kotera, M. Yokoi and Y. Ueda, J. Chem. Phys., 1950, 18, 1414 CAS.
  21. W. Airey, C. Glidewell, D. W. H. Rankin, A. G. Robiette, G. M. Sheldrick and D. W. J. Cruickshank, Trans. Faraday Soc., 1970, 66, 551 RSC.
  22. (a) L. S. Bartell, J. Chem. Phys., 1960, 32, 827 CrossRef CAS; (b) C. Glidewell, Inorg. Chim. Acta, 1975, 12, 219 CrossRef CAS.
  23. A. Haaland, Angew. Chem., Int. Ed. Engl., 1989, 28, 992 CrossRef.
  24. C. M. Huntley, G. S. Laurenson and D. W. H. Rankin, J. Chem. Soc., Dalton Trans., 1980, 945 Search PubMed.
  25. J. R. Lewis, P. T. Brain and D. W. H. Rankin, Spectrum, 1997, 15, 7 Search PubMed.
  26. N. W. Mitzel, P. T. Brain and D. W. H. Rankin, ED96, Version 2.0, 1998A program developed on the basis of formerly described ED programs: A. S. F. Boyd, G. Laurenson and D. W. H. Rankin, J. Mol. Struct., 1981, 71, 217 Search PubMed.
  27. A. W. Ross, M. Fink and R. Hilderbrandt, International Tables for X-Ray Crystallography, ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, Boston, 1992, vol. C, p. 245 Search PubMed.
  28. Gaussian 98, Revision A.6, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
  29. (a) J. S. Binkley, J. A. Pople and W. J. Hehre, J. Am. Chem. Soc., 1980, 102, 939 CrossRef CAS; (b) M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro and W. J. Hehre, J. Am. Chem. Soc., 1982, 104, 2797 CrossRef CAS; (c) W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. Defrees, J. A. Pople and J. S. Binkley, J. Am. Chem. Soc., 1982, 104, 5039 CrossRef CAS.
  30. (a) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257 CrossRef CAS; (b) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213 CrossRef CAS.
  31. J. D. Odom, E. J. Stampf, Y. S. Li and J. R. Durig, J. Mol. Struct., 1978, 49, 1 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.