Reactivity of free and CoIII-co-ordinated phosphite; mechanisms of bromine oxidation and H/D exchange[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Sonya J. Carrington, David A. Buckingham, Jim Simpson, Allan G. Blackman and Charles R. Clark


Abstract

The complexes t- and p-[Co(tren)(NH3){OP(H)(O)2}]ClO4 (1·ClO4 and 2·ClO4, respectively) and syn(OP(H)(O)2), anti(OH2)-[Co(cyclen)(OH2){OP(H)(O)2}]ClO4 (3·ClO4, cyclen = 1,4,7,10-tetraazacyclododecane) have been prepared. Single crystal structures have been determined for 1·ClO4·2H2O and 3·ClO4·3H2O. In weakly acidic aqueous solution 3 equilibrates with its syn(OH2),anti(OP(H)(O)2) isomer and the chelate [Co(cyclen){O2P(H)O}]+. Kinetic studies of acid catalysed H/D exchange in H2DPO3 (4-D) and [Co(NH3)5{OP(D)(OH)O}]2+ (5-D) in water (55.0 °C, I = 1.0 mol dm–3, NaClO4) showed that 4-D (kex = (1.6 ± 0.2) × 10–4 dm3 mol–1 s–1) is four-fold more reactive than 5-D (kex = (4.0 ± 0.5) × 10–5 dm3 mol–1 s–1) and that exchange likely involves P(OH)3 and [Co(NH3)5{OP(OH)2}]2+ intermediates, respectively. Bromine oxidation of [Co(NH3)5{OP(H)(O)2}]+ (5-H, 25 °C, pH 1.22–4.34, I = 1.0 mol dm–3, NaClO4) follows the rate equation kobs = kHKaH [5-H]T/(KaH + [H+])(1 + KBr3[Br]), where KaH ((4.2 ± 0.5) × 10–4 mol dm–3) corresponds to the independently measured acid dissociation constant of the 5-H conjugate acid, KBr3 (17.6 dm3 mol–1) = [Br3]/[Br2][Br], and where kH (1316 ± 20 dm3 mol–1 s–1) represents the specific rate constant for reaction of Br2 with 5-H. For 5-D as substrate kD = 560 dm3 mol–1 s–1 (kH/kD = 2.4). Similar studies with H3PO3 (4-H, 25 °C, pH 1.27–2.55, I = 1.0 mol dm–3, NaClO4) showed that bromine oxidation follows the rate equation: kobs = kHKa1HKa2H[4-H]T/([H+]2 + Ka1H[H+] + Ka1HKa2H )(1 + KBr3[Br]), with Ka1H (0.108 mol dm–3) and Ka2H (1.67 × 10–6 mol dm–3) corresponding to the independently measured first and second acid dissociation constants of 4-H, and with kH (2.1 × 105 dm3 mol–1 s–1) representing the specific rate constant for reaction of Br2 with HPO32–. For 4-D as substrate kD = 1.22 × 105 dm3 mol–1 s–1 (kH/kD = 1.7). NMR studies showed that there is no loss of 17O label to solvent from H3P17O3, either during H/D exchange or on bromine oxidation. Mechanisms for the reactions are discussed.


References

  1. M. J. Sisley and R. B. Jordan, Inorg. Chem., 1987, 26, 273 CrossRef CAS.
  2. D. E. Linn and E. S. Gould, Inorg. Chem., 1987, 26, 3442 CrossRef CAS.
  3. D. E. Linn and E. S. Gould, Inorg. Chem., 1988, 27, 3140 CrossRef CAS.
  4. C. R. Clark, D. A. Buckingham, A. G. Blackman and G. B. Jameson, Inorg. Chim. Acta, in the press Search PubMed.
  5. A. Moondra, A. Mathur and K. K. Banerji, Int. J. Chem. Kinet., 1991, 23, 669 CAS.
  6. G. P. Haight, Jr., M. Rose and J. Preer, J. Am. Chem. Soc., 1968, 90, 4809 CrossRef.
  7. M. J. Gaudin, C. R. Clark and D. A. Buckingham, Inorg. Chem., 1986, 25, 2569 CrossRef CAS.
  8. D. A. Buckingham, C. R. Clark, A. J. Rogers and J. Simpson, Inorg. Chem., 1998, 37, 3497 CrossRef CAS.
  9. D. A. Buckingham, C. R. Clark and A. J. Rogers, J. Am. Chem. Soc., 1997, 119, 4050 CrossRef CAS.
  10. G. P. Haight, Coord. Chem. Rev., 1987, 79, 293 CrossRef.
  11. D. A. Buckingham, C. R. Clark and A. J. Rogers, Aust. J. Chem., 1998, 51, 461 CrossRef CAS.
  12. J. H. Kim, J. Britten and J. Chin, J. Am. Chem. Soc., 1993, 115, 3618 CrossRef CAS.
  13. Y. Iitaka, M. Shina and E. Kimura, Inorg. Chem., 1974, 13, 2886 CrossRef CAS.
  14. J. H. Loehlin and E. B. Fleischer, Acta Crystallogr., Sect. B, 1976, 32, 3063 CrossRef.
  15. R. B. Martin, J. Am. Chem. Soc., 1958, 81, 1574.
  16. J. Reuben, D. Samuel and B. L. Silver, J. Am. Chem. Soc., 1963, 85, 3093 CrossRef CAS.
  17. D. E. C. Corbridge, Phosphorus. An Outline of its Chemistry, Biochemistry and Uses, 5th edn., Elsevier, Amsterdam, 1995, p. 51 Search PubMed.
  18. W. A. Jenkins and D. M. Yost, J. Inorg. Nucl. Chem., 1959, 11, 297 CrossRef CAS.
  19. A. G. Blackman, D. A. Buckingham and C. R. Clark, Aust. J. Chem., 1991, 44, 981 CAS.
  20. S. Agarwal, A. Mathur and K. K. Banerji, J. Indian Chem. Soc., 1992, 69, 433 Search PubMed.
  21. J. March, Advanced Organic Chemistry, 4th edn., Wiley, New York, 1992, p. 1170 Search PubMed.
  22. F. H. Westheimer, Chem. Rev., 1949, 45, 419 CrossRef CAS; F. Holloway, M. Cohen and F. H. Westheimer, J. Am. Chem. Soc., 1951, 73, 65 CrossRef CAS.
  23. B. Silver and Z. Luz, J. Phys. Chem., 1962, 66, 1356 CAS.
  24. N. E. Brasch, D. A. Buckingham, A. B. Evans and C. R. Clark, J. Am. Chem. Soc., 1996, 118, 7969 CrossRef CAS.
  25. F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, 6th edn., Wiley, New York, 1999, p. 412 Search PubMed.
  26. E. S. Gould and H. Taube, J. Am. Chem. Soc., 1964, 86, 1318 CrossRef CAS.
  27. D. A. Buckingham, C. R. Clark and W. S. Webley, Aust. J. Chem., 1980, 33, 263 CAS.
  28. C. R. Clark and D. A. Buckingham, Inorg. Chim Acta., 1997, 254, 339 CrossRef CAS.
  29. A. Albert and E. P. Serjeant, Ionization Constants of Acids and Bases, Methuen, London, 1963, p. 151 Search PubMed.
  30. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd edn., Butterworths, London, 1959, p. 492 Search PubMed.
  31. OLIS, On-line Instrument Systems, Inc., Bogart, GA, 1985.
  32. G. M. Sheldrick, SHELXTL PLUS, Structure determination software programs, Siemens Analytical X-Ray Instruments Inc, Madison, WI, 1990.
  33. G. M. Sheldrick, SHELXS 97, Program for the solution of crystal structures, University of Göttingen, 1997.
  34. G. M. Sheldrick, SHELXL 97, Program for the refinement of crystal structures, University of Göttingen, 1997.
Click here to see how this site uses Cookies. View our privacy policy here.