Thioacetate complexes of Group 12 metals. Structures of [Ph4P][Zn(SC{O}Me)3(H2O)] and [Ph4P][Cd(SC{O}Me)3][hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Jeyagowry T. Sampanthar, Theivanayagam C. Deivaraj, Jagadese J. Vittal and Philip A. W. Dean


Abstract

The compounds [Ph4P][Zn(SC{O}Me)3(H2O)] 1 and [Ph4P][M(SC{O}Me)3] (M = Cd 2 or Hg 3) were synthesized by treating the appropriate metal salt with Et3NH+MeC{O}S and Ph4PCl in the ratio 1∶3∶1 in water. The structures of 1 and 2 were determined by single crystal X-ray diffraction methods. In 1 the Zn is bonded to sulfur atoms of three thioacetate ligands and an oxygen atom of the H2O molecule to have an idealised tetrahedral geometry. The hydrogen atoms of the co-ordinated H2O molecule are involved in intramolecular O–H[hair space][hair space]· · ·[hair space][hair space]O hydrogen bonding with two carbonyl oxygen atoms. Approximate mirror symmetry is present in the anion. In the [Cd(SC{O}Me)3] anion in 2 a propeller-like arrangement of the three co-ordinated MeC{O}S is found. The three sulfur atoms are strongly bound to Cd giving a pyramidal CdS3 kernel. The anion is best described as having fac octahedral geometry with an approximate C3 symmetry. Metal NMR data have been measured for 2 and 3. The reduced temperature cadmium-113 NMR spectrum of a [Cd(SC{O}Me)3]–[Cd(SC{O}Ph)3] mixture provides evidence for [Cd(SC{O}Me)x- (SC{O}Ph)3[hair space][hair space]x] (x = 3–0), confirming the integrity of the two parent complexes in solution. Cadmium-113 NMR spectra of 2∶L mixtures (L = H2O, DMF or DMSO) show that [Cd(SC{O}Me)3] is a weak acceptor. Mercury-199 NMR spectra of analogous 3∶L mixtures show that [Hg(SC{O}Me)3] has, at best, a weaker acceptor ability towards H2O, DMF and DMSO than its cadmium analogue. The syntheses and metal NMR data show that the acceptor ability of [M(SC{O}Me)3] (M = Zn to Hg) towards H2O varies with M in the order ZnII > CdII > HgII.


References

  1. R. Devy, J. J. Vittal and P. A. W. Dean, Inorg. Chem., 1998, 37, 6939 CrossRef CAS.
  2. J. J. Vittal and P. A. W. Dean, Inorg. Chem., 1993, 32, 791 CrossRef CAS.
  3. J. J. Vittal and P. A. W. Dean, Inorg. Chem., 1996, 35, 3089 CrossRef CAS.
  4. J. J. Vittal and P. A. W. Dean, Acta Crystallogr., Sect. C, 1997, 53, 409 CrossRef.
  5. J. J. Vittal and P. A. W. Dean, Acta Crystallogr., Sect. C, 1998, 54, 319 CrossRef.
  6. T. R. Burnett, P. A. W. Dean and J. J. Vittal, Inorg. Chem., 1994, 72, 1127 CAS.
  7. J. J. Vittal and P. A. W. Dean, Acta Crystallogr., Sect. C, 1997, 52, 1180 CrossRef.
  8. J. J. Vittal and P. A. W. Dean, Polyhedron, 1998, 17, 1937 CrossRef CAS.
  9. P. A. W. Dean, J. J. Vittal, D. C. Craig and M. L. Scudder, Inorg. Chem., 1998, 37, 1661 CrossRef.
  10. J. T. Sampanthar, J. J. Vittal and P. A. W. Dean, J. Chem. Soc., Dalton Trans., 1999, 1993 RSC.
  11. E. S. Gruff and S. A. Koch, J. Am. Chem. Soc., 1990, 112, 1245 CrossRef CAS.
  12. R. A. Santos, E. F. Gruff, S. A. Koch and G. S. Harbison, J. Am. Chem. Soc., 1991, 113, 469 CrossRef CAS.
  13. M. Bochmann, K. Webb, M. Harman and M. B. Hursthouse, Angew. Chem., Int. Ed. Engl., 1990, 29, 638 CrossRef.
  14. E. S. Gruff and S. A. Koch, J. Am. Chem. Soc., 1989, 111, 8762 CrossRef CAS.
  15. M. Bochmann, G. Bwembya, R. Grinter, J. Lu, K. J. Webb, D. J. Williamson, M. B. Hursthouse and M. Mazid, Inorg. Chem., 1993, 21, 532 CrossRef.
  16. A. K. Duhme and H. Z. Strasdeit, Z. Anorg. Allg. Chem., 1999, 625, 6 CrossRef.
  17. M. D. Nyman, M. J. Hampden-Smith and E. N. Duesler, Adv. Mater. CVD, 1996, 2, 171 Search PubMed.
  18. M. D. Nyman, M. J. Hampden-Smith and E. N. Duesler, Inorg. Chem., 1997, 36, 2218 CrossRef CAS.
  19. R. Foster and C. A. Fyfe, Prog. NMR Spectrosc., 1969, 4, 1 Search PubMed.
  20. SMART & SAINT Software Reference Manuals, Version 4.0, Siemens Energy & Automation, Inc., Analytical Instrumentation, Madison, WI, 1996 Search PubMed.
  21. G. M. Sheldrick, SADABS, a software for empirical absorption correction, University of Göttingen, 1996.
  22. SHELXTL Reference Manual, Version 5.03, Siemens Energy & Automation, Inc., Analytical Instrumentation, Madison, WI, 1996 Search PubMed.
  23. C. J. Jameson and J. Mason, in Multinuclear NMR, ed. J. Mason, Plenum, New York, 1987, ch. 4, p. 81.
  24. G. K. Carson, P. A. W. Dean, M. J. Stillman, Inorg. Chim. Acta, 1981, 56, 59; 1985, 108, 71 Search PubMed.
  25. G. K. Carson and P. A. W. Dean, Inorg. Chim. Acta, 1982, 66, l57 CrossRef.
  26. R. J. Goodfellow, in Multinuclear NMR, ed. J. Mason, Plenum, New York, 1987, ch. 21 Search PubMed.
  27. M. Bonamico, G. Dessy, V. Fares and L. Scaramuzza, J. Chem. Soc., Dalton Trans., 1976, 67 RSC.
  28. C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
  29. A. Bondi, J. Chem. Phys., 1969, 68, 441.
Click here to see how this site uses Cookies. View our privacy policy here.