Reactivity of the palladium dimer [Pd2(µ-SO2)(µ-dba)(PBz3)2]. Syntheses and structural characterisation of [Pd3(µ-SO2)3(PBz3)3], [Pd2(µ-SO2)(µ-dppm)(PBz3)2], [Pd(SO2)(PBz3)2], [Pd3(µ-CO)2(µ-SO2)(PBz3)3] and [Pd3(µ-SO2)2(CNBut[hair space])2(PBz3)3] (Bz = benzyl)[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Sanja Arifhodzic-Radojevic, Andrew D. Burrows, Nick Choi, Mary McPartlin, D. Michael P. Mingos, Stephen V. Tarlton and Ramón Vilar


Abstract

The reaction between [Pd2(dba)3]·solvent (dba = dibenzylideneacetone, solvent = CHCl3 or C6H6) and PBz3 (Bz = benzyl) in the presence of SO2 led to either [Pd2(µ-SO2)(µ-dba)(PBz3)2] 1 or [Pd3(µ-SO2)3(PBz3)3] 2 depending on the absence or presence of an excess of SO2 in solution or in the recrystallisation. The crystal structure of 2 shows it to be a regular triangulo-cluster with Pd–Pd bond distances 2.7225(9) Å. Complex 1 reacted with dppm with displacement of dba to give [Pd2(µ-SO2)(µ-dppm)(PBz3)2] 3. The crystal structure of 3 shows it to have a much shorter Pd–Pd bond length than 1 [2.670(2) Å for 3 cf. 2.885(2) Å for 1], which can be rationalised on the basis of the palladium atoms having been formally oxidised to PdI and the SO2 reduced to SO22–. Complex 1 reacted with PBz3 to give two mononuclear complexes, the previously characterised [Pd(dba)(PBz3)2] and the new complex [Pd(SO2)(PBz3)2] 4 which was characterised by a single crystal X-ray analysis. Complex 4 forms a distorted T-shaped structure with the P–Pd–P angle 163.67(14)°. It contains a η1-pyramidal SO2 ligand, and is the first mononuclear palladium SO2 complex to be crystallographically characterised. Complex 1 reacts with CO to give a mixture of the triangulo-clusters [Pd3(µ-CO)2(µ-SO2)(PBz3)3] 5 and [Pd3(µ-CO)(µ-SO2)2(PBz3)3] 6. Reaction with an excess of CO converted 6 into 5, and the crystal structure of 5 reveals relatively short Pd–Pd bond lengths consistent with a 42-electron cluster. Complex 1 reacted with CNBut to give [Pd3(µ-SO2)2(CNBut)2(PBz3)3] which has also been crystallographically characterised.


References

  1. R. F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, London, 1985 Search PubMed; J. Tsuji, Palladium Reagents and Catalysts: Innovation in Organic Synthesis, Wiley, Chichester, 1995 Search PubMed.
  2. Some examples are: (a) Y. Inoue, T. Hibi, M. Satake and H. Hashimoto, J. Chem. Soc., Chem. Commun., 1979, 982 Search PubMed; (b) J. Andrieu, P. Braunstein and A. D. Burrows, J. Chem. Res. (S), 1993, 380 Search PubMed; (c) C. Amatore, A. Jutand, F. Khalil, M. A. M'Barki and L. Mottier, Organometallics, 1993, 12, 3168 Search PubMed and refs. therein.
  3. W. A. Herrmann, W. R. Thiel, C. Broβmer, K. Öfele, T. Priermeier and W. Scherer, J. Organomet. Chem., 1993, 461, 51 Search PubMed.
  4. J. Fawcett, R. D. W. Kemmitt, D. R. Russell and O. Serindag, J. Organomet. Chem., 1995, 486, 171 Search PubMed.
  5. C. Amatore and A. Jutand, Coord. Chem. Rev., 1998, 178–180, 511 Search PubMed; C. Amatore, G. Broeker, A. Jutand and F. Khalil, J. Am. Chem. Soc., 1997, 119, 5176 Search PubMed.
  6. (a) A. D. Burrows, N. Choi, M. McPartlin, D. M. P. Mingos, S. V. Tarlton and R. Vilar, J. Organomet. Chem., 1999, 573, 313 Search PubMed; (b) S. V. Tarlton, N. Choi, M. McPartlin, D. M. P. Mingos and R. Vilar, J. Chem. Soc., Dalton Trans., 1999, 653 Search PubMed.
  7. A. D. Burrows and D. M. P. Mingos, Transition Met. Chem., 1993, 18, 129 Search PubMed.
  8. S. G. Bott, M. F. Hallam, O. J. Ezomo, D. M. P. Mingos and I. D. Williams, J. Chem. Soc., Dalton Trans., 1988, 1461 Search PubMed.
  9. O. Heyke, C. Maichle, R. Hübener and I.-P. Lorenz, Z. Anorg. Allg. Chem., 1993, 619, 1793 Search PubMed; D. C. Moody and R. R. Ryan, Inorg. Chem., 1977, 16, 1052 Search PubMed.
  10. M. F. Hallan, N. D. Howells, D. M. P. Mingos and R. W. N. Wardle, J. Chem. Soc., Dalton Trans., 1985, 845 Search PubMed.
  11. Y. W. Yared, S. L. Miles, R. Bau and C. A. Reed, J. Am. Chem. Soc., 1977, 99, 7076 Search PubMed.
  12. W. Lin, S. R. Wilson and G. S. Girolami, Inorg. Chem., 1994, 33, 2265 Search PubMed; R. Vilar, D. M. P. Mingos and C. J. Cardin, J. Chem. Soc., Dalton Trans., 1996, 4313 Search PubMed.
  13. (a) R. G. Holloway, B. R. Penfold, R. Colton and M. J. McCormick, J. Chem. Soc., Chem. Commun., 1976, 485 Search PubMed; (b) C.-L. Lee, Y.-P. Yong, S. J. Rettig, B. R. James, D. A. Nelson and M. A. Lilga, Organometallics, 1986, 5, 2220 Search PubMed.
  14. R. U. Kirss and R. Eisenberg, Inorg. Chem., 1989, 28, 3372 Search PubMed.
  15. R. Usón, J. Forniés, J. F. Sanz, M. A. Usón, I. Usón and S. Herrero, Inorg. Chem., 1997, 36, 1912 Search PubMed.
  16. J. M. Ritchey, D. C. Moody and R. R. Ryan, Inorg. Chem., 1983, 22, 2276 Search PubMed.
  17. J. J. Levison and S. D. Robinson, Chem. Commun., 1967, 198 Search PubMed; J. Chem. Soc., Chem. Commun., 1972, 2013 Search PubMed; P. Zdunneck, A. Häusler and E. Wenschuh, Z. Chem., 1986, 26, 302 Search PubMed.
  18. G. J. Kubas, Acc. Chem. Res., 1994, 27, 183 Search PubMed.
  19. T. Hoffmann, B. Ziemer, C. Mügge, U. Bertholdt, E. Wenschuh and P. Leibnitz, Z. Anorg. Allg. Chem., 1991, 600, 55 Search PubMed.
  20. S. Otsuka, Y. Tatsuno, M. Miki, T. Aoki, M. Matsumoto, H. Yoshioka and K. Nakatsu, J. Chem. Soc., Chem. Commun., 1973, 445 Search PubMed.
  21. A. D. Burrows and D. M. P. Mingos, Coord. Chem. Rev., 1996, 154, 19 Search PubMed.
  22. A. D. Burrows, J. C. Machell, D. M. P. Mingos and H. R. Powell, J. Chem. Soc., Dalton Trans., 1992, 1521 Search PubMed.
  23. T. Ukai, H. Kawazura, Y. Ishii, J. J. Bonnet and J. A. Ibers, J. Organomet. Chem., 1974, 65, 253 Search PubMed.
  24. SHELTXL (PC version 5.03), Siemens Analytical Instruments Inc., Madison, WI, 1994.
Click here to see how this site uses Cookies. View our privacy policy here.