Statistically controlled kinetics for the formation and decomposition of binuclear complexes of CuII with a large octaaza cryptand[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Manuel G. Basallote, Joaquín Durán, M. Jesús Fernández-Trujillo and M. Angeles Máñez


Abstract

Kinetic studies have been made on the formation and decomposition of mono- and bi-nuclear copper(II) complexes with a symmetrical binucleating octaaza cryptand L containing two tris(2-aminoethyl)amine (tren) moieties bridged by three m-xylyl groups. The decomposition of binuclear CuII–L complexes upon addition of acid excess occurs with two separate kinetic steps; the rate constant for the faster step shows saturation behaviour, whereas a simple linear dependence on [H+] is observed for the slower step. Under similar conditions, the mononuclear complex also decomposes in two steps, with rate constants very close to those found for the binuclear species. The whole of the kinetic data for the acid-promoted decomposition of the mono- and bi-nuclear complexes indicates that the rate constants for the successive dissociation of both metal centres are statistically controlled, the value for the first CuII being twice as large as that corresponding to the second one. The second order rate constants for the formation of the mono- and bi-nuclear complexes have been determined in very basic solutions, and the rate of co-ordination of the first metal ion is also found to be double that of the second one, showing again statistically controlled kinetics. These results clearly indicate that both tren sub-units of L behave independently during complex formation and decomposition, i.e. there is no significant kinetic effect caused by the proximity of the metal centres and the cryptand is flexible enough to undergo rapidly any reorganisation required to accommodate them. The kinetic data for the formation and decomposition of these compounds are also compared with literature data for related complexes, and possible reaction mechanisms are discussed.


References

  1. J. M. Brown, L. Powers, B. Kincaid, J. A. Larrabee and T. G. Spiro, J. Am. Chem. Soc., 1980, 102, 4210 CrossRef CAS; J. A. Tanier, E. D. Getzoff, K. M. Beem, J. S. Richardson and D. C. Richardson, J. Mol. Biol., 1982, 106, 181 CrossRef CAS; G. L. Woolery, L. Powers, M. Winkler, E. J. Solomon and T. G. Spiro, J. Am. Chem. Soc., 1984, 106, 86 CrossRef CAS; R. M. Fronko, J. F. Penner-Hahn and C. J. Bender, J. Am. Chem. Soc., 1988, 110, 7554 CrossRef CAS; C. R. Andrew, P. Lappalainen, M. Saraste, M. T. Hay, Y. Lu, C. Dennison, G. W. Canters, J. A. Fee, C. E. Slutter, N. Nakamura and J. Sanders-Loehr, J. Am. Chem. Soc., 1995, 117, 10759 CrossRef CAS; I. Michaud-Soret, L. Jacquamet, N. Debaecker-Petit, L. Le Pape, V. V. Barynin and J. M. Latour, Inorg. Chem., 1998, 37, 3874 CrossRef CAS; H. Sakiyama, R. Mochizuki, A. Sugawara, M. Sakamoto, Y. Nishida and M. Yamasaki, J. Chem. Soc., Dalton Trans., 1999, 997 RSC; T. D. Ju, R. A. Ghiladi, D. H. Lee, G. P. F. van Strijdonck, A. S. Woods, R. J. Cotter, V. G. Young and K. D. Karlin, Inorg. Chem., 1999, 38, 2244 CrossRef CAS.
  2. J. A. R. Navarro, M. A. Romero, J. M. Salas, M. Quirós and E. R. T. Tiekink, Inorg. Chem., 1997, 36, 4988 CrossRef CAS; M. P. Donzello, C. Ercolani, K. M. Kadish, Z. Ou and U. Russo, Inorg. Chem., 1998, 37, 3682 CrossRef CAS; P. Amudha, M. Kandaswamy, L. Govindasamy and D. Velmurugan, Inorg. Chem., 1998, 37, 4486 CrossRef CAS; A. Escuer, C. I. Harding, Y. Dussart, J. Nelson, V. McKee and R. Vicente, J. Chem. Soc., Dalton Trans., 1999, 223 RSC; V. M. Miskowski, S. Franzen, A. P. Shreve, M. R. Ondrias, S. E. Wallace-Williams, M. E. Barr and W. H. Woodruff, Inorg. Chem., 1999, 38, 2546 CrossRef CAS; B. Bosnich, Inorg. Chem., 1999, 38, 2554 CrossRef CAS.
  3. R. Menif, J. Reibenspies and A. E. Martell, Inorg. Chem., 1991, 30, 3446 CrossRef CAS.
  4. R. Menif, A. E. Martell, P. Squattrito and A. Clearfield, Inorg. Chem., 1990, 29, 4723 CrossRef CAS.
  5. Q. Lu, J. Reibenspies, A. E. Martell and R. J. Motekaitis, Inorg. Chem., 1996, 35, 2636; M. T. B. Luiz, B. Szpoganicz, M. Rizzotto, A. E. Martell and M. G. Basallote, Inorg. Chim. Acta, 1997, 254, 345 CrossRef; T. F. Pauwels, W. Lippens, G. G. Herman and A. M. Goeminne, Polyhedron, 1998, 17, 1715 CrossRef CAS; T. F. Pauwels, W. Lippens, P. W. Smet, G. G. Herman and A. M. Goeminne, Polyhedron, 1999, 18, 1029 CrossRef CAS.
  6. R. J. Motekaitis and A. E. Martell, Inorg. Chem., 1991, 30, 694 CrossRef CAS; D. A. Rockcliffe and A. E. Martell, Inorg. chem., 1993, 32, 3143 CrossRef CAS; K. P. McCue, D. A. Voss, Jr., C. Marks and J. R. Morrow, J. Chem. Soc., Dalton Trans., 1998, 2961 RSC; M. T. B. Luiz, B. Szpoganicz, M. Rizzotto, M. G. Basallote and A. E. Martell, Inorg. Chim. Acta, 1999, 287, 134 CrossRef.
  7. M. G. Basallote and A. E. Martell, Inorg. Chem., 1988, 27, 4219 CrossRef; M. P. Ngwenya, D. Chen, A. E. Martell and J. Reibenspies, Inorg. Chem., 1991, 30, 2732 CrossRef CAS; M. Becker, S. Schindler and R. van Eldik, Inorg. Chem., 1994, 33, 5370 CrossRef CAS; S. Mahapatra, S. Kaderli, A. Llobet, Y. Neuhold, T. Palanché, J. A. Halfen, V. G. Young, Jr., T. A. Kaden, L. Que, Jr., A. D. Zuberbüller and W. B. Tolman, Inorg. Chem., 1997, 36, 6343 CrossRef.
  8. R. M. Smith, A. E. Martell and R. J. Motekaitis, NIST Critical Stability Constants of Metal Complexes Database, U.S. Dept. of Commerce, Gaithesbourgh, 1993 Search PubMed.
  9. M. J. Fernández-Trujillo, B. Szpoganicz, M. A. Máñez, L. T. Kist and M. G. Basallote, Polyhedron, 1996, 15, 3511 CrossRef.
  10. M. G. Basallote, J. Durán, M. J. Fernández-Trujillo, M. A. Máñez and B. Szpoganicz, J. Chem. Soc., Dalton Trans., 1999, 1093 RSC.
  11. A. E. Martell and R. J. Motekaitis, Determination and use of stability constants, VCH, New York, 1992 Search PubMed.
  12. GLINT Software, Applied Photophysics Ltd., Leatherhead, 1995.
  13. R. G. Wilkins, Kinetics and Mechanisms of Reactions of Transition Metal Complexes, 2nd edn., VCH, Weinheim, 1991, p. 22 Search PubMed.
  14. J. H. Espenson, Chemical Kinetics and Reaction Mechanisms, McGraw-Hill, New York, 1981, pp. 70 and 71.
  15. P. Kathirgamanathan, A. B. Soares, D. T. Richens and A. G. Sykes, Inorg. Chem., 1985, 24, 2950 CrossRef CAS; B. L. Ooi and A. G. Sykes, Inorg. Chem., 1988, 27, 310 CrossRef CAS.
  16. W. Marty and J. H. Espenson, Inorg. Chem., 1979, 18, 1246 CrossRef CAS; J. P. Bourke, E. Karu and R. D. Cannon, Inorg. Chem., 1996, 35, 1577 CrossRef CAS; M. C. Pohl and J. H. Espenson, Inorg. Chem., 1980, 19, 235 CrossRef CAS; F. A. Armstrong, R. A. Henderson and A. G. Sykes, J. Am. Chem. Soc., 1980, 102, 6545 CrossRef CAS.
  17. Ref. 13, p. 227.
  18. R. A. Read and D. W. Margerum, Inorg. Chem., 1981, 20, 3143 CrossRef CAS.
  19. S. Siddiqui and R. E. Shepherd, Inorg. Chem., 1983, 22, 3726 CrossRef CAS.
  20. L. H. Chen and C. S. Chung, Inorg. Chem., 1989, 28, 1402 CrossRef CAS.
  21. R. W. Hay, M. T. H. Tarafder and M. M. Hassan, Polyhedron, 1996, 15, 725 CrossRef CAS.
  22. W. J. Lan and C. S. Chung, J. Chem. Soc., Dalton Trans., 1994, 191 RSC.
  23. L. H. Chen and C. S. Chung, Inorg. Chem., 1988, 27, 1880 CrossRef CAS.
  24. A. M. Dittler-Klingemann, C. Orvig, F. E. Hahn, F. Thaler, C. D. Hubbard, R. van Eldik, S. Schindler and I. Fábián, Inorg. Chem., 1996, 35, 7798 CrossRef; F. Thaler, C. D. Hubbard, F. W. Heinemann, R. van Eldik, S. Schindler, I. Fábián, A. M. Dittler-Klingemann, F. E. Hahn and C. Orvig, Inorg. Chem., 1998, 37, 4022 CrossRef CAS.
  25. Ref. 13, pp. 224–226.
  26. J. A. Drumhiller, F. Montavon, J. M. Lehn and R. W. Taylor, Inorg. Chem., 1986, 25, 3751 CrossRef CAS.
  27. C. T. Lin, D. B. Rorabacher, G. R. Cayley and D. W. Margerum, Inorg. Chem., 1975, 14, 919 CrossRef CAS.
  28. B. F. Liang, D. W. Margerum and C. S. Chung, Inorg. Chem., 1979, 18, 2001 CrossRef CAS; B. F. Liang and C. S. Chung, Inorg. Chem., 1980, 19, 1867 CrossRef CAS.
  29. F. T. Chen, C. S. Lee and C. S. Chung, Polyhedron, 1983, 2, 1301 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.