Co-ordination chemistry of macrocyclic compounds with dangling phosphines. Unusual NMR shifts in metallo-calix[4]arenes[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Cedric B. Dieleman, Claire Marsol, Dominique Matt, Nathalie Kyritsakas, Anthony Harriman and Jean-Pierre Kintzinger


Abstract

The chelating behaviour of three polyphosphines, cone-5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis(diphenylphosphinomethoxy)calix[4]arene L1, cone-5,11,17,23-tetra-tert-butyl-25,26,27-tris(diphenylphosphinomethoxy)-28-methoxycalix[4]arene L2, and cone-5,11,17,23-tetra-tert-butyl-25,26-bis(diphenylphosphinomethoxy)-27,28-dihydroxycalix[4]arene L3, has been investigated. When [Mo(CO)3(C7H8)] and tetraphosphine L1 are heated together under reflux in tetrahydrofuran (THF[hair space]) complex [Mo(CO)3L1] 1 is formed, for which the calixarene behaves as a fac-bonded tridentate ligand with one phosphine remaining free. Similar fac-chelating behaviour is found with [Mo(CO)3L2] 2, which is obtained from triphosphine L2. Formation of this latter complex is accompanied by the calixarene matrix adopting a partially flattened-cone conformation. In contrast, the conventional cone conformation is maintained in the trinuclear complex [(AuCl)3L2] 3, obtained quantitatively by treating L2 with [AuCl(THT)] (THT = tetrahydrothiophene). Reaction of L1 with [RuCl2(DMSO)4] (DMSO = Me2SO) in CH2Cl2 results in selective formation of the deep purple complex [RuCl2L2] 4 built around a fac-trigonal bipyramidal RuCl2P3 structure. Complex 4 reacts reversibly and stepwise with two equivalents of CH3CN. The calculated stability constants, as determined from a spectrophotometric titration, are log β1 = 9.1 and log β2 = 12.4. The proximally substituted calixarene L3 reacts with [PtCl2(COD)] (COD = cycloocta-1,5-diene) to afford the chelate complex cis-[PtCl2L3] 5. As revealed by an X-ray diffraction study, the P–Pt vectors point away from the calixarene axis in the solid state. The axial H atom of the C6H2CH2 group located between the two phosphine units of L3 undergoes a significant low-field shift upon complexation (δ 7.32 vs. 4.48 for free L3) presumably due to interaction with the lone pairs of the two neighbouring O-atoms. Complex 5 displays dynamic behaviour in solution, which can be rationalized as follows: (i[hair space]) a fast flip-flop motion of the hydroxyl groups at low temperature, alternately forming hydrogen bonds with each of two neighbouring phenolic oxygens; (ii) a reversible inversion of the phenol ring through the lower-rim annulus, triggered by breakage of the hydrogen bonds at higher temperature. Reaction of [PtCl2(COD)] with one equivalent of L1, followed by in situ oxidation with NH2CONH2·H2O2, results in formation of a chelate complex, containing two proximal phosphines bonded to platinum as in 5 and two pending CH2P(O)Ph2 phosphine oxides. Stepwise reaction of [PtCl2(COD)] with one equivalent of L1 and two equivalents of [AuCl(THT)] gives a cis complex in which the platinum atom is again bonded to two proximal phosphines and the two AuCl units to the other two phosphine arms. As in 5, an anomalous low-field shift is observed for the axial C6H2CH belonging to the platinocycle of these complexes.


References

  1. C. B. Dieleman, D. Matt, I. Neda, R. Schmutzler, H. Thönessen, P. G. Jones and A. Harriman, J. Chem. Soc., Dalton Trans., 1998, 2115 RSC.
  2. C. Wieser, C. B. Dieleman and D. Matt, Coord. Chem. Rev., 1997, 165, 93 CrossRef CAS.
  3. S. Pellet-Rostaing, J.-B. Regnouf de Vains and R. Lamartine, Tetrahedron Lett., 1995, 36, 5745 CrossRef CAS.
  4. W. Xu, R. J. Puddephatt, L. Manojlovic-Muir, K. W. Muir and C. S. Frampton, J. Incl. Phenom., 1994, 19, 277 CrossRef CAS.
  5. C. Floriani, D. Jacoby, A. Chiesi-Villa and C. Guastini, Angew. Chem., Int. Ed. Engl., 1989, 28, 1376 CrossRef.
  6. C. B. Dieleman, D. Matt and P. G. Jones, J. Organomet. Chem., 1997, 454–456, 461 CrossRef.
  7. C. Dieleman, C. Loeber, D. Matt, A. De Cian and J. Fischer, J. Chem. Soc., Dalton Trans., 1995, 3097 RSC.
  8. C. Wieser, D. Matt, J. Fischer and A. Harriman, J. Chem. Soc., Dalton Trans., 1997, 2391 RSC.
  9. C. Loeber, D. Matt, A. De Cian and J. Fischer, J. Organomet. Chem., 1994, 475, 297 CrossRef CAS.
  10. P. Stössel, H. A. Mayer, C. Maichle-Mössmer, R. Fawzi and M. Steimann, Inorg. Chem., 1996, 35, 5860 CrossRef.
  11. P. Barbaro, C. Bianchini and A. Togni, Organometallics, 1997, 16, 3004 CrossRef CAS.
  12. C. Jaime, J. de Mendoza, P. Prados, P. M. Nieto and C. Sánchez, J. Org. Chem., 1991, 56, 3372 CrossRef CAS.
  13. J. O. Magrans, J. de Mendoza, M. Pons and P. Prados, J. Org. Chem., 1997, 62, 4518 CrossRef.
  14. K. Ito, A. Kida, Y. Ohba and T. Sone, Chem. Lett., 1998, 1221 CAS.
  15. G. Jia, I.-M. Lee, D. W. Meek and J. C. Galluci, Inorg. Chim. Acta, 1990, 177, 81 CrossRef CAS.
  16. C. Wieser and D. Matt, Platinum Met. Rev., 1998, 42, 2 Search PubMed.
  17. M. Stolmàr, C. Floriani, A. Chiesi-Villa and C. Rizzoli, Inorg. Chem., 1997, 36, 1694 CrossRef CAS.
  18. PLATON, A Multipurpose Crystallographic Tool, version 1999, Utrecht University, Utrecht, 1999.
  19. V. Zabel, W. Saenger and S. Mason, J. Am. Chem. Soc., 1986, 108, 3664 CrossRef CAS.
  20. H. Günther, NMR-Spektroskopie, Georg Thieme, Stuttgart, 3rd edn., 1992, pp. 306–312 Search PubMed.
  21. T. Kusano, M. Tabatabai, Y. Okamoto and V. Böhmer, J. Am. Chem. Soc., 1999, 121, 3789 CrossRef CAS.
  22. C. D. Gutsche, Calixarenes Revisited, The Royal Society of Chemistry, Cambridge, 1998 Search PubMed.
  23. C. Dieleman and D. Matt, unpublished work.
  24. R. A. Binstead and A. D. Zuberbühler, SPECFIT v. 2.1, Spectrum Software Associates, Chapel Hill, NC, 1994.
  25. R. Uson, A. Laguna and M. Laguna, Inorg. Synth., 1989, 26, 85 CAS.
  26. I. P. Evans, A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 204 RSC.
  27. D. Drew and J. R. Doyle, in Inorg. Synthesis, ed. R. J. Angelici, Wiley, New York, 1990, vol. 28, pp. 350–352 Search PubMed.
  28. G. Brauer, Handbuch der preparativen Anorganischen Chemie, F. Enke Verlag, Stuttgart, 3rd edn., 1981, p. 1885 Search PubMed.
  29. W. Z. Wegener, Z. Chem., 1971, 11, 262 CAS.
  30. K. L. Marsi, J. Org. Chem., 1974, 39, 265 CrossRef.
  31. C. Dieleman, Thèse de Doctorat, Université Louis Pasteur and Strasbourg, 1999.
  32. OpenMoleN, Interactive Structure Solution, B.V. Nonius and Delft, 1997.
Click here to see how this site uses Cookies. View our privacy policy here.