Phyllosilicate-like structure anchored silylating agents: calorimetric data on divalent cation–aminated centre interactions in the lamellar cavity

(Note: The full text of this document is currently only available in the PDF Version )

Maria G. da Fonseca and Claudio Airoldi


Abstract

Nanocomposites with phyllosilicate-like structure containing silylating agents have been synthesized by using metal ions to aid the formation of the inorganic matrix, giving a structure similar to that of talc. Two distinct silicates were prepared by treating magnesium chloride with 3-aminopropyltrimethoxysilane or 6-amino-4-azahexyltrimethoxysilane, catalysed by sodium hydroxide, to give SILMg1 and SILMg2, with lamellar distances of 1731 and 2053 pm, respectively. Adsorption isotherms were obtained by suspending the solid with M(NO3)2 solutions (M = Cu, Zn, Ni or Co), which gave the number of moles adsorbed as 7.70 ± 0.050, 6.10 ± 0.04 and 3.81 ± 0.01, 2.20 ± 0.01 mmol g–1 for SILMg1 and SILMg2 with Cu2+ and Zn2+, respectively. These data obtained from a batch method were adjusted to the Langmuir model. The adsorption process was also followed by microcalorimetry, by suspending the mass of material in 2.0 cm3 of water and titrating with aqueous solutions of the cations. From these values, the respective thermal effects of dilution were subtracted to give the net thermal effects, which enabled the determination of ΔH and K values and from them ΔG and ΔS values. The exothermic enthalpic values for Cu2+, Zn2+, Ni2+ and Co2+ were –8.62 ± 0.56, –8.20 ± 0.48, –3.78 ± 0.03 and 8.86 ± 0.81 for SILMg1 and –8.40 ± 0.50, –9.29 ± 0.55, –20.12 ± 0.67 and –61.55 ± 0.06 for SILMg2. The entropic values varied from 27 to 143 J K–1 mol–1. The exothermic values for all free energies indicated that the cations are favourably bonded to the pendant groups disposed in the lamellar cavities.


References

  1. T. J. Pinnavaia, Science, 1983, 220, 4595.
  2. T. Mizutani, Y. Fukushima, A. Okada and O. Kamigaito, Bull. Chem. Soc. Jpn., 1990, 63, 2094 CAS.
  3. Y. Fukushima and M. Tami, J. Chem. Soc., Chem. Commun., 1995, 24 Search PubMed.
  4. Y. Fukushima and M. Tami, Bull. Chem. Soc. Jpn., 1996, 69, 3667 CAS.
  5. S. L. Burkett, A. Press and S. Mann, Chem. Mater., 1997, 9, 1071 CrossRef CAS.
  6. Y.-S. Hong and S.-J. Kim, Bull. Korean Chem. Soc., 1997, 18, 2.
  7. N. T. Whilton, S. L. Burkett and S. Mann, J. Mater. Chem., 1998, 8, 1927 RSC.
  8. T. P. Lishko, L. V. Glushchenko, Y. V. Kholin, Z. N. Zaitev, A. Bugaevskii and N. D. Donskaya, Russ. J. Phys. Chem., 1991, 65, 1584 Search PubMed.
  9. A. R. Cestari and C. Airoldi, J. Colloid Interface Sci., 1997, 195, 338 CrossRef CAS.
  10. A. R. Cestari and C. Airoldi, Colloids Surf. A, 1996, 117, 7 CrossRef CAS.
  11. E. F. S. Vieira, J. A. Simoni and C. Airoldi, J. Mater. Chem., 1997, 7, 11 Search PubMed.
  12. S. Roca and C. Airoldi, Thermochim. Acta, 1996, 284, 289 CrossRef CAS.
  13. K. Nakamoto, Infrared Spectra of Inorganic and Co-ordination Compounds, 2nd edn., Wiley-Interscience, New York, 1970 Search PubMed.
  14. R. M. Silverstein, G. C. Bassler and T. C. Morrel, Spectrometric Identification of Organic Compounds, Wiley, Singapore, 1991 Search PubMed.
  15. D. L. Pavia, G. M. Lampman and G. S. Kriz, Introduction to Spectroscopy, 2nd edn., Saunders College Publishing, New York, 1996 Search PubMed.
  16. K. A. Carrado and L. Xu, Microporous Mesoporous Mater., 1999, 27, 87 CrossRef CAS.
  17. M. G. Fonseca, C. R. Silva and C. Airoldi, Langmuir, 1999, 15, 5048 CrossRef.
  18. J. H. Rayner and G. Brown, Clays Clay Miner., 1973, 21, 103 CAS.
  19. D. M. Moore and R. C. Reynolds, X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, London, 1997 Search PubMed.
  20. G. W. Brindely and G. Brown, Crystal Structures of Clay Minerals and their X-Ray Identification, 1st edn., Mineralogical Society, London, 1980 Search PubMed.
  21. A. W. Adamson, Physical Chemistry of Surfaces, 5th edn., Wiley, New York, 1990 Search PubMed.
  22. G. Krestov, Thermodynamics of Solvation: Solution and Dissolution; Ions and Solvents; Structure and Energetics, 1st edn., Ellis Horwood, London, 1991 Search PubMed.
  23. Y. Marcus, Ion Solvation, Wiley, London, 1985 Search PubMed.
  24. A. Bem-Naim, Solvation Thermodynamics, Plenum, New York, 1987 Search PubMed.
  25. R. M. C. Santos and C. Airoldi, J. Mater. Chem., 1994, 4, 1479 RSC.
  26. C. Airoldi and E. F. C. Alcântara, J. Chem. Thermodyn., 1995, 27, 623 CrossRef CAS.
  27. S. Roca and C. Airoldi, J. Chem. Soc., Dalton Trans., 1997, 2517 RSC.
  28. C. Airoldi and E. F. C. Alcântara, Thermochim. Acta, 1995, 259, 95 CrossRef CAS.
  29. S. J. Ashcroft and G. Beech, Inorganic Thermodynamics, Pitman Press, London, 1973 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.