Kinetic studies on the copper(II)-mediated oxygenolysis of the flavonolate ligand. Crystal structures of [Cu(fla)2] (fla = flavonolate) and [Cu(O-bs)2(py)3] (O-bs = O-benzoylsalicylate)[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Éva Balogh-Hergovich, József Kaizer, Gábor Speier, Gyula Argay and László Párkányi


Abstract

The complex [Cu(fla)2] has been prepared by treating copper(II) chloride with sodium flavonolate in tetrahydrofuran solution. Crystallographic characterisation of the complex [Cu(fla)2]·2CHCl3 has shown that the co-ordination geometry around the copper(II) ion is square planar. Oxygenation of [Cu(fla)2] in dimethylformamide solution at ambient conditions gives [Cu(O-bs)2] (O-bs = O-benzoylsalicylate) and carbon monoxide. Crystallographic characterisation of [Cu(O-bs)2] on crystals obtained from pyridine as [Cu(O-bs)2(py)3]·0.91py revealed that the co-ordination geometry of the copper(II) ion is square pyramidal with trans O atoms of O-bs and N atoms of py ligands in basal and an N atom of py in apical position. The oxygenolysis of [Cu(fla)2] in DMF was followed by electron spectroscopy and the rate constants were determined according to the rate law –d[Cu(fla)2]/dt = k[Cu(fla)2][O2]. The rate constant, activation enthalpy, entropy and free energy at 373 K are as follows: k/mol dm–3 s–1 = (1.57 ± 0.08) × 10–2, ΔH[hair space] /kJ mol–1 = 53 ± 6, ΔS[hair space] /J K–1 mol–1 = –138 ± 11, ΔG[hair space] /kJ mol–1 = 105 ± 2. The reaction fits a Hammett linear free energy relationship and a higher electron density on copper results in a faster oxygenation reaction.


References

  1. B. G. Fox and J. D. Lipscomb, in Biological Oxidation Systems, ed. C. Reddy and G. A. Hamilton, Academic Press, New York, 1990, vol. 1, pp. 367–388 Search PubMed; K. D. Karlin and Z. Tyeklár, Bioinorganic Chemistry of Copper, Chapman & Hall, New York, 1992 Search PubMed; E. I. Solomon, M. J. Baldwin and M. D. Lowery, Chem. Rev., 1992, 92, 521 Search PubMed; K. D. Karlin, Science, 1993, 261, 701 Search PubMed; W. G. Levine, in The Biochemistry of Copper, eds. J. Peisach, P. Aisen and W. E. Blumberg, Academic Press, New York, 1966, pp. 371–387 CrossRef CAS; J. A. Halfen, S. Mahapatra, E. C. Wilkinson, S. Kaderli, V. G. Young, L. Que, Jr., A. D. Zuberbühler and W. B. Tolman, Science, 1996, 271, 1397 CrossRef CAS.
  2. K. D. Karlin, S. Kaderli and A. D. Zuberbühler, Acc. Chem. Res., 1997, 30, 139 CrossRef CAS; K. D. Karlin, Z. Tyeklár and A. D. Zuberbühler, in Bioinorganic Catalysis, ed. J. Reedijk, Marcel Dekker, New York, 1993, pp. 261–315 Search PubMed; V. Mahadevan, Z. Hou, A. P. Cole, D. E. Root, T. K. Lal, E. I. Solomon and T. D. P. Stack, J. Am. Chem. Soc., 1997, 119, 11996 Search PubMed; S. Mahapatra, J. A. Halfen, E. C. Wilkinson, G. Pan, X. Wang, J. V. G. Young, C. J. Cramer, L. Que, Jr. and W. B. Tolman, J. Am. Chem. Soc., 1996, 119, 11555 CrossRef CAS.
  3. T. Funabiki, Catalysis by Metal Complexes, Oxygenases and Model Systems, Kluwer Academic Press, Dordrecht, 1997, vol. 19 Search PubMed; M. Sono, M. P. Roach, E. D. Coulter and J. H. Dawson, Chem. Rev., 1996, 96, 2841 Search PubMed; G. Speier, New J. Chem., 1994, 18, 143 CrossRef CAS; G. Speier, Z. Tyeklár, L. Szabó II, P. Tóth, C. G. Pierpont and D. N. Hendrickson, in The Activation of Dioxygen and Homogeneous Catalytic Oxidation, eds. D. H. R. Barton, A. E. Martell and D. T. Sawyer, Plenum Press, New York, 1993, pp. 423–436 Search PubMed; L. Que, Jr. and R. Y. N. Ho, Chem. Rev., 1996, 96, 2607 Search PubMed; C. G. Pierpont and C. W. Lange, Prog. Inorg. Chem., 1994, 41, 331 Search PubMed.
  4. D. W. Westlake, G. Talbot, E. R. Blakely and F. J. Simpson, Can J. Microbiol., 1959, 5, 62; S. Hattori and I. Noguchi, Nature (London), 1959, 184, 1145 CAS; H. Sakamoto, Seikagu (J. Jpn. Biochem. Soc.), 1963, 35, 633 Search PubMed; T. Oka, F. J. Simpson and H. G. Krishnamurty, Can. J. Microbiol., 1977, 16, 493.
  5. E. Makasheva and N. T. Golovkina, Zh. Obsch. Khim., 1973, 43, 1640; M. Thomson and C. R. Williams, Anal. Chim. Acta, 1976, 85, 375 CrossRef; K. Takamura and M. Ito, Chem. Pharm. Bull., 1977, 25, 3218 CAS.
  6. A. Nishinaga, T. Tojo, H. Tomita and T. Matsuura, J. Chem. Soc., Perkin Trans. 1, 1979, 2511 RSC.
  7. V. Rajananda and S. B. Brown, Tetrahedron Lett., 1981, 22, 4331 CrossRef CAS.
  8. T. Matsuura, H. Matsushima and R. Nakashima, Tetrahedron, 1970, 26, 435 CrossRef CAS.
  9. M. M. A. El-Sukkary and G. Speier, J. Chem. Soc., Chem. Commun., 1981, 745 RSC.
  10. (a) A. Nishinaga, T. Tojo and T. Matsuura, J. Chem. Soc., Chem. Commun., 1974, 896 RSC; (b) A. Nishinaga, T. Kuwashige, T. Tsutsui, T. Mashino and K. Maruyama, J. Chem. Soc., Dalton Trans., 1994, 805 RSC.
  11. M. Utaka, M. Hojo, Y. Fujii and A. Takeda, Chem. Lett., 1984, 635 CAS; M. Utaka and A. Takeda, J. Chem. Soc., Chem. Commun., 1985, 1824 RSC; É. Balogh-Hergovich and G. Speier, J. Mol. Catal., 1992, 71, 1 CrossRef CAS.
  12. G. Speier, V. Fülöp and L. Párkányi, J. Chem. Soc., Chem. Commun., 1990, 512 RSC.
  13. É. Balogh-Hergovich, G. Speier and G. Argay, J. Chem. Soc., Chem. Commun., 1991, 551 RSC.
  14. I. Lippai, G. Speier, G. Huttner and L. Zsolnai, Chem. Commun., 1997, 741 RSC; I. Lippai and G. Speier, J. Mol. Catal., 1998, 130, 139 Search PubMed; I. Lippai, G. Speier, G. Huttner and L. Zsolnai, Acta Crystallogr., Sect. C, 1997, 53, 1547 CrossRef; É. Balogh-Hergovich, J. Kaizer and G. Speier, Inorg. Chim. Acta, 1997, 256, 9 CrossRef CAS.
  15. D. F. Shriver and M. A. Drezdzon, The Manipulation of Air-sensitive Compounds, Wiley, New York, 1986 Search PubMed.
  16. R. W. Adams, E. Bishop, R. L. Martin and G. Winter, Aust. J. Chem., 1966, 19, 207 CAS.
  17. M. A. Smith, R. M. Newman and R. A. Webb, J. Heterocycl. Chem., 1968, 5, 425 CAS.
  18. A. Einhorn, L. Rothlauf and R. Seuert, Chem. Ber., 1911, 44, 3309 Search PubMed.
  19. D. D. Perrin, W. L. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon, New York, 2nd edn., 1990 Search PubMed.
  20. R. L. Carlin, Magnetochemistry, Springer, Berlin, 1986, p. 311 Search PubMed.
  21. A. B. P. Lever, E. R. Milaeva and G. Speier, in Phthalocyanines Properties and Applications, eds. C. C. Lezno and A. B. P. Lever, VCH, New York, 1993, vol. 3, p. 8 Search PubMed.
  22. G. M. Sheldrick, SHELXS 86, Program for Crystal Structure Determinations, University of Göttingen, 1990.
  23. G. M. Sheldrick, SHELXL 93, Program for Crystal Structure Determinations, University of Göttingen, 1993.
  24. G. M. Sheldrick, SHELXS 97, Program for Crystal Structure Determinations, University of Göttingen, 1997.
  25. G. M. Sheldrick, SHELXL 97, Program for Crystal Structure Determinations, University of Göttingen, 1997.
  26. A. Kruis, in Landolt-Börnstein, Springer, Berlin, 1976, bd. 4, teil 4, p. 269 Search PubMed.
  27. G. Ram and A. R. Sharaf, J. Indian Chem. Soc., 1968, 45, 13 Search PubMed.
  28. G. Speier, in Bioinorganic Chemistry of Copper, eds. K. D. Karlin and Z. Tyeklár, Chapman & Hall, New York, 1993, pp. 382–394 Search PubMed.
  29. R. C. Mehrotra and R. Bohra, Metal Carboxylates, Academic Press, London, 1983 Search PubMed.
  30. T. Grezier and E. Weiss, Chem. Ber., 1976, 109, 3142 CrossRef.
  31. R. D. Willett and G. L. Breneman, Inorg. Chem., 1983, 22, 326 CrossRef CAS.
  32. M. C. Etter, Z. Urbanczyk-Lipkowska, S. Baer and P. F. Barbara, J. Mol. Struct., 1986, 144, 155 CrossRef CAS.
  33. G. Speier, K. Selmeczi, Z. Pintér, G. Huttner and L. Zsolnai, Z. Kristallogr., 1998, 213, 263 CAS.
  34. L. Párkányi and G. Speier, Z. Kristallogr., 1995, 210, 307 CAS.
  35. G. Speier and V. Fülöp, J. Chem. Soc., Dalton Trans., 1989, 2331 RSC.
  36. L. Que, Jr. and R. Y. N. Ho, Chem. Rev., 1996, 96, 2607 CrossRef.
  37. C. A. Tyson and A. E. Martell, J. Phys. Chem., 1970, 74, 2601 CrossRef CAS.
  38. W. B. Tolman, Acc. Chem. Res., 1997, 30, 227 CrossRef CAS; H. V. Obias, Y. Lin, N. N. Murthy, E. Pidcock, E. I. Solomon, M. Ralle, N. J. Blackburn, Y. M. Neuhold, A. D. Zuberbühler and K. D. Karlin, J. Am. Chem. Soc., 1998, 120, 12960 CrossRef CAS.
  39. F. A. Cotton and G. Wilkinson, Basic Inorganic Chemistry, Wiley, New York, 1976, pp. 412–416 Search PubMed.
  40. É. Balogh-Hergovich and G. Speier, Transition Met. Chem., 1982, 7, 177 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.