Tuning of charge-transfer absorption and molecular quadratic non-linear optical properties in ruthenium(II) ammine complexes[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Benjamin J. Coe, James A. Harris, Inge Asselberghs, André Persoons, John C. Jeffery, Leigh H. Rees, Thomas Gelbrich and Michael B. Hursthouse


Abstract

The ligands N-methyl-2,7-diazapyrenium (Medap+), N-(2-pyrimidyl)-4,4[hair space]′-bipyridinium (PymQ+), N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium (Mebpe+) and N-phenyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium (Phbpe+) have been used to prepare a series of complex salts trans-[RuII(NH3)4(LD)(LA)][PF6]3 [LD = NH3 and LA = Medap+ 1, PymQ+ 2, Mebpe+ 3 or Phbpe+ 4; LD = pyridine (py) and LA = Medap+ 8, PymQ+ 9, Mebpe+ 10 or Phbpe+ 11; LD = 1-methylimidazole (mim) and LA = Medap+ 12, PymQ+ 13, Mebpe+ 14 or Phbpe+ 15]. The salt trans-[RuII(NH3)4(py)(4,4[hair space]′-bpy)][PF6]2 (4,4[hair space]′-bpy = 4,4[hair space]′-bipyridine) 16 has also been prepared. The dipolar complexes in 1–4 and 8–15 exhibit intense dπ(RuII)→π*(LA) metal-to-ligand charge-transfer (MLCT) absorptions in the region 560–700 nm. For a given LA, the MLCT energy decreases as the donor strength of LD increases, in the order py < NH3 < mim. Within the pairs of Medap+/PymQ+ complexes, the energy of the Ru-based HOMO is constant and the MLCT energy decreases by ca. 0.3 eV as the acceptor strength of LA increases on going from Medap+ to PymQ+. The complexes of Mebpe+ or Phbpe+ also have similar HOMO energies which are lower than those of their Medap+/PymQ+ counterparts due to the increased basicity of LA. Replacement of Mebpe+ by Phbpe+ decreases the MLCT energy by ca. 0.1 eV due to the greater electron-withdrawing ability of Phbpe+. Single-crystal structures of 8·4MeCN and 16·2MeCN have been determined. Molecular first hyperpolarizabilities β of 1–4 and 8–15, obtained from hyper-Rayleigh scattering measurements at 1064 nm, are in the range (579–1068) × 10–30 esu. Static hyperpolarizabilities β0 derived by using the two-level model are also very large, with 13 having the largest at 336 × 10–30 esu. In general, β0 increases as the absorption energy decreases, in keeping with the two-level model.


References

  1. Nonlinear Optical Properties of Organic Molecules and Crystals, eds. D. S. Chemla and J. Zyss, Academic Press, Orlando, 1987, vols. 1 and 2 Search PubMed; J. Zyss, Molecular Nonlinear Optics: Materials, Physics and Devices, Academic Press, Boston, 1994 Search PubMed; S. R. Marder, B. Kippelen, A. K.-Y. Jen and N. Peyghambarian, Nature (London), 1997, 388, 845 Search PubMed; T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays and A. Persoons, J. Mater. Chem., 1997, 7, 2175 Search PubMed.
  2. S. R. Marder, in Inorganic Materials, eds. D. W. Bruce and D. O'Hare, Wiley, Chichester, 1992 Search PubMed; D. R. Kanis, M. A. Ratner and T. J. Marks, Chem. Rev., 1994, 94, 195 Search PubMed; N. J. Long, Angew. Chem., Int. Ed. Engl., 1995, 34, 21 CrossRef CAS; I. R. Whittall, A. M. McDonagh, M. G. Humphrey and M. Samoc, Adv. Organomet. Chem., 1998, 42, 291 CrossRef CAS.
  3. W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard and A. Persoons, Nature (London), 1993, 363, 58 CrossRef CAS; Proc. SPIE, Int. Soc. Opt. Eng., 1994, 2143, 14 Search PubMed; F. W. Vance and J. T. Hupp, J. Am. Chem. Soc., 1999, 121, 4047 Search PubMed.
  4. J. Zyss, C. Dhenaut, T. Chauvan and I. Ledoux, Chem. Phys. Lett., 1993, 206, 409 CrossRef CAS; C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault and H. Le Bozec, Nature (London), 1995, 374, 339 CrossRef.
  5. I. R. Whittall, M. G. Humphrey, A. Persoons and S. Houbrechts, Organometallics, 1996, 15, 1935 CrossRef CAS; R. H. Naulty, A. M. McDonagh, I. R. Whittall, M. P. Cifuentes, M. G. Humphrey, S. Houbrechts, J. Maes, A. Persoons, G. A. Heath and D. C. R. Hockless, J. Organomet. Chem., 1998, 563, 137 CrossRef CAS.
  6. S. Houbrechts, K. Clays, A. Persoons, V. Cadierno, M. P. Gamasa and J. Gimeno, Organometallics, 1996, 15, 5266 CrossRef CAS; V. Cadierno, S. Conejero, M. P. Gamasa, J. Gimeno, I. Asselberghs, S. Houbrechts, K. Clays, A. Persoons, J. Borge and S. García-Granda, Organometallics, 1999, 18, 582 CrossRef CAS.
  7. M. Tamm, T. Jentzsch and W. Werncke, Organometallics, 1997, 16, 1418 CrossRef CAS.
  8. I.-Y. Wu, J. T. Lin, J. Luo, S.-S. Sun, C.-S. Li, K. J. Lin, C. Tsai, C.-C. Hsu and J.-L. Lin, Organometallics, 1997, 16, 2038 CrossRef CAS; I.-Y. Wu, J. T. Lin, J. Luo, C.-S. Li, C. Tsai, Y.-S. Wen, C.-C. Hsu, F.-F. Yeh and S. Liou, Organometallics, 1998, 17, 2188 CrossRef CAS.
  9. (a) B. J. Coe, M. C. Chamberlain, J. P. Essex-Lopresti, S. Gaines, J. C. Jeffery, S. Houbrechts and A. Persoons, Inorg. Chem., 1997, 36, 3284 CrossRef CAS; (b) B. J. Coe, J. P. Essex-Lopresti, J. A. Harris, S. Houbrechts and A. Persoons, Chem. Commun., 1997, 1645 RSC; (c) B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts and A. Persoons, Inorg. Chem., 1998, 37, 3391 CrossRef CAS.
  10. J. L. Oudar and D. S. Chemla, J. Chem. Phys., 1977, 66, 2664 CrossRef CAS; J. Zyss and J. L. Oudar, Phys. Rev. A, 1982, 26, 2016 CrossRef.
  11. B. J. Coe, S. Houbrechts, I. Asselberghs and A. Persoons, Angew. Chem., Int. Ed., 1999, 38, 366 CrossRef CAS; B. J. Coe, Chem. Eur. J., 1999, 5, 2464 CrossRef CAS.
  12. J. C. Curtis, B. P. Sullivan and T. J. Meyer, Inorg. Chem., 1983, 22, 224 CrossRef CAS.
  13. A. J. Blacker, J. Jazwinski and J.-M. Lehn, Helv. Chim. Acta, 1987, 70, 1 CrossRef.
  14. E. D. Bergmann, F. E. Crane, Jr. and R. M. Fuoss, J. Am. Chem. Soc., 1952, 74, 5981.
  15. P. J. Stang, D. H. Cao, S. Saito and A. M. Arif, J. Am. Chem. Soc., 1995, 117, 6273 CrossRef CAS.
  16. S. Hünig, J. Groβ, E. F. Lier and H. Quast, Liebigs Ann. Chem., 1973, 339 Search PubMed.
  17. K. Clays and A. Persoons, Phys. Rev. Lett., 1991, 66, 2980 CrossRef CAS; Rev. Sci. Instrum., 1992, 63, 3285 Search PubMed; E. Hendrickx, K. Clays, A. Persoons, C. Dehu and J. L. Brédas, J. Am. Chem. Soc., 1995, 117, 3547 Search PubMed.
  18. S. Houbrechts, K. Clays, A. Persoons, Z. Pikramenou and J.-M. Lehn, Chem. Phys. Lett., 1996, 258, 485 CrossRef CAS.
  19. M. Stähelin, D. M. Burland and J. E. Rice, Chem. Phys. Lett., 1992, 191, 245 CrossRef CAS.
  20. E. Hendrickx, C. Dehu, K. Clays, J. L. Brédas and A. Persoons, ACS Symp. Ser., 1995, 601, 82 CAS.
  21. I. D. Morrison, R. G. Denning, W. M. Laidlaw and M. A. Stammers, Rev. Sci. Instrum., 1996, 67, 1445 CrossRef CAS.
  22. Collect, Data collection software, R. Hooft, Nonius B.V., Delft, The Netherlands, 1998.
  23. Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307 CrossRef CAS.
  24. R. H. Blessing, Acta Crystallogr. Sect. A, 1995, 51, 33 CrossRef; J. Appl. Crystallogr., 1997, 30, 421 Search PubMed.
  25. S. Mackay, C. J. Gilmore, C. Edwards, M. Tremayne, N. Stewart and K. Shankland, MAXUS, a computer program for the solution and refinement of crystal structures from diraction data, University of Glasgow, UK, Nonius B.V., Delft, The Netherlands and MacScience Co. Ltd., Yokohama, Japan, 1998.
  26. SHELXTL 5.03 program system, Siemens Analytical X-Ray Instruments, Madison, WI, 1995.
  27. G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467 CrossRef.
  28. G. M. Sheldrick, SHELXL 97, Program for crystal structure refinement, University of Göttingen, 1997.
  29. D. W. Clack, J. C. Evans, C. R. Morris and C. R. Rowlands, J. Chem. Soc., Perkin Trans. 2, 1988, 1541 RSC.
  30. M. Horner and S. Hünig, Liebigs Ann. Chem., 1982, 1183 Search PubMed.
  31. P. Ford, De F. P. Rudd, R. Gaunder and H. Taube, J. Am. Chem. Soc., 1968, 90, 1187 CrossRef CAS; C. R. Johnson and R. E. Shepherd, Inorg. Chem., 1983, 22, 2439 CrossRef CAS.
  32. J. F. Wishart, X. Zhang, S. S. Isied, J. A. Potenza and H. J. Schugar, Inorg. Chem., 1992, 31, 3179 CrossRef CAS.
  33. K. J. LaChance-Galang, P. E. Doan, M. J. Clarke, U. Rao, A. Yamano and B. M. Hoffman, J. Am. Chem. Soc., 1995, 117, 3529 CrossRef CAS.
  34. L.-T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken and C. W. Spangler, J. Phys. Chem., 1991, 95, 10643 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.