Divalent tin and lead complexes of a bulky salen ligand: the syntheses and structures of [SalenBut,Me]Sn and [SalenBut,Me]Pb

(Note: The full text of this document is currently only available in the PDF Version )

Matthew C. Kuchta, Juliet M. Hahn and Gerard Parkin


Abstract

The divalent tin and lead complexes, [SalenBut,Me]Sn and [SalenBut,Me]Pb, have been synthesized by the reactions of [(Me3Si)2N]2M (M = Sn, Pb) with the substituted Salen compound, [SalenBut,Me]H2. [SalenBut,Me]Sn and [SalenBut,Me]Pb have been characterized by X-ray diffraction, which demonstrates that the complexes are structurally similar, with the metal atom located above the [N2O2] plane. Despite their similar structures, however, 1H NMR spectroscopy demonstrates that the barrier for the formal transfer of the metal from one face of the ligand to the other is significantly greater for the tin derivative.


References

  1. (a) M. C. Kuchta and G. Parkin, J. Chem. Soc., Chem. Commun., 1994, 1351 RSC; (b) M. C. Kuchta and G. Parkin, J. Am. Chem. Soc., 1994, 116, 8372 CrossRef CAS; (c) M. C. Kuchta and G. Parkin, Chem. Commun., 1996, 1669 RSC.
  2. For further oxidative addition chemistry of [η4-Me8taa]Sn see: M. C. Kuchta and G. Parkin, Polyhedron, 1996, 15, 4599 Search PubMed.
  3. For a review of terminal chalcogenido complexes, see: M. C. Kuchta and G. Parkin, Coord. Chem. Rev., 1998, 176, 323 Search PubMed.
  4. M. C. Kuchta and G. Parkin, New J. Chem., 1998, 22, 523 RSC.
  5. T. Hascall, A. L. Rheingold, I. Guzei and G. Parkin, Chem. Commun., 1998, 101 RSC.
  6. For reviews of transition metal Salen complexes see: (a) M. D. Hobday and T. D. Smith, Coord. Chem. Rev., 1972–1973, 9, 311 Search PubMed; (b) R. H. Holm, G. W. Everett, Jr. and A. Chakravorty, Prog. Inorg. Chem., 1966, 7, 83 CAS.
  7. (a) D. A. Atwood, M. S. Hill, J. A. Jegier and D. Rutherford, Organo-metallics, 1997, 16, 2659 Search PubMed; (b) D. A. Atwood and D. Rutherford, Organometallics, 1996, 15, 4417 CrossRef CAS and refs. therein; (c) D. A. Atwood, J. A. Jegier and D. Rutherford, Inorg. Chem., 1996, 35, 63 CrossRef CAS; (d) M. G. Davidson, C. Lambert, I. Lopez-Solera, P. R. Raithby and R. Snaith, Inorg. Chem., 1995, 34, 3765 CrossRef CAS; (e) J. T. Leman, J. Braddock-Wilking, A. J. Coolong and A. R. Barron, Inorg. Chem., 1993, 32, 4324 CrossRef CAS; (f) D. A. Atwood, J. A. Jegier and D. Rutherford, Bull. Chem. Soc. Jpn., 1997, 70, 2093 CAS; (g) M. S. Hill, P. R. Wei and D. A. Atwood, Polyhedron, 1998, 17, 811 CrossRef CAS.
  8. The related [SalanH2] ligand system, which differs from the [Salen] system in the sense that the imine, [HC [double bond, length as m-dash] N] moiety is formally hydrogenated to give a CH2NH group, has also been studied recently. For a review of Salan complexes of the Group 12, 13, and 14 elements, see: D. A. Atwood, Coord. Chem. Rev., 1997, 165, 267 Search PubMed.
  9. Aluminium complexes of this ligand, namely, [SalenBut,Me]AlCl and [SalenBut,Me]AlR (R = Me, Et), have been prepared. See: I. Taden, H.-C. Kang, W. Massa and J. Okuda, J. Organomet. Chem., 1997, 540, 189 Search PubMed.
  10. This method has previously been used for the synthesis of [Salen]Sn and related complexes. See: A. M. van den Bergen, J. D. Cashion, G. D. Fallon and B. O. West, Aust. J. Chem., 1990, 43, 1559 Search PubMed.
  11. For a recent review of the coordination chemistry of PbII, see: J. Parr, Polyhedron, 1997, 16, 551 Search PubMed.
  12. [Saldph] differs from [Salen] in being derived from 4,5-dimethyl-phenylene-1,2-diamine rather than ethylenediamine.
  13. CSD Version 5.17. 3D Search and Research Using the Cambridge Structural Database, F. H. Allen and O. Kennard, Chem. Des. Automat. News, 1993, 81, pp. 1, 31–37 Search PubMed.
  14. There is one related divalent tin complex listed in the Cambridge Structural Database, namely [Salean]Sn. See: D. A. Atwood, J. A. Jegier, K. J. Martin and D. Rutherford, J. Organomet. Chem., 1995, 503, C4 Search PubMed.
  15. (a) W. D. Honnick and J. Zuckerman, Inorg. Chem., 1979, 18, 1437 CrossRef CAS and refs. therein; (b) D. K. Dey, M. K. Das and H. Nöth, Z. Naturforsch., Teil B, 1999, 54, 145 CAS.
  16. F. Di Bianca, E. Rivarola, G. C. Stocco and R. Barbieri, Z. Anorg. Allg. Chem., 1972, 387, 126 CAS.
  17. For a review of organotin Schiff base complexes, which include Salen derivatives, see: M. Nath and S. Goyal, Main Group Met. Chem., 1996, 19, 75 Search PubMed.
  18. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, 3rd edn., 1960, p. 256 Search PubMed.
  19. Some PbII complexes of protonated [SalenR,R]H2 are, however known. See, for example: (a) J. Parr, A. T. Ross and A. M. Z. Slawin, J. Chem. Soc., Dalton Trans., 1996, 1509 RSC; (b) J. Parr, A. T. Ross and M. Z. Slawin, Polyhedron, 1997, 16, 2765 CrossRef CAS.
  20. [Salen]Ni provides an example in which the [N2O2] coordination core is planar and the ligand adopts an approximately planar geometry, see: A. G. Manfredotti and C. Guastini, Acta Crystallogr., Sect. C, 1983, 39, 863 Search PubMed.
  21. 207Pb (I= 1/2, 22.1%). See: J. Emsley, The Elements, Clarendon Press, Oxford, 2nd edn., 1991 Search PubMed.
  22. The protons of a static [CH2CH2] bridge in [SalenBut,Me]M belong to an ABCD spin system since the carbon atoms are not coplanar with the approximate [N2O2] mirror plane (see Fig. 2 and 3). If the bridge is sufficiently flexible that a planar arrangement may be obtained, the spin system simplifies to AA′BB′.
  23. Although the precise mechanism of the exchange process is unknown, the observation that the [HC [double bond, length as m-dash] N] group exhibits 3J(207Pb–H) coupling at high temperatures suggests that dissociation of lead is not involved and that the exchange is intramolecular.
  24. Due to the complex nature of the ABCD pattern of the stereochemically rigid structure, a detailed analysis of the dynamics was not performed. Nevertheless, an upper limit for the exchange barrier at 270 K can be estimated as 13 kcal mol–1.
  25. The coupling to tin is an unresolved composite of coupling to both 117Sn (I= 1/2, 7.68%) and 119Sn (I= 1/2, 8.58%) where J(119Sn)/J(117Sn)= 1.05, due to the ratio respective magnetogyrio ratios. See ref. 21.
  26. A. van den Bergen, R. J. Cozens and K. S. Murray, J. Chem. Soc. A, 1970, 3060 RSC.
  27. (a) J. P. McNally, V. S. Leong and N. J. Cooper, A. C. S. Symp. Ser., 1987, 357, 6 CAS; (b) B. J. Burger and J. E. Bercaw, A. C. S. Symp. Ser., 1987, 357, 79 CAS.
  28. (a) D. H. Harris and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1974, 895 RSC; (b) M. J. S. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Rivière and M. Rivière-Baudet, J. Chem. Soc., Dalton Trans., 1977, 2004 RSC.
  29. G. Casiraghi, G. Casnati, G. Puglia, G. Sartori and G. Terenghi, J. Chem. Soc., Perkin Trans. 1, 1980, 1862 RSC.
  30. See, for example: W. Zhang and E. N. Jacobsen, J. Org. Chem., 1991, 56, 2296 Search PubMed.
  31. Multinuclear NMR, ed. J. Mason, Plenum Press, New York, 1987 Search PubMed.
  32. G. M. Sheldrick, SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, University of Göttingen, 1981.
Click here to see how this site uses Cookies. View our privacy policy here.