Solvent and incoming ligand effects on the mechanism of substitution reactions of trans-[FeH(L)(DPPE)2]+ (L = MeCN), and comparison with the dihydrogen analogue (L = H2)[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Manuel G. Basallote, Joaquín Durán, María J. Fernández-Trujillo, Gabriel González, M. Angeles Máñez and Manuel Martínez


Abstract

Reaction of trans-[FeH(MeCN)(DPPE)2]+ with PhCN to form trans-[FeH(PhCN)(DPPE)2]+ occurred with a single measurable kinetic step in THF, acetone or MeOH solutions (DPPE = Ph2PCH2CH2PPh2). The observed rate constants are independent of the concentration of the nucleophile and do not change very much with the solvent nature. However, the activation parameters are strongly solvent-dependent, especially ΔV[hair space][hair space] that changes from 20 cm3 mol–1 in THF to 35 cm3 mol–1 in neat benzonitrile. Kinetic results for the reactions of trans-[FeH(MeCN)(DPPE)2]+ with substituted benzonitriles indicate that kinetic parameters for the substitution of co-ordinated MeCN also change with the nature of the entering ligand. The reactions of trans-[FeH(L)(DPPE)2]+ complexes (L = MeCN or H2) with the bidentate ligands C6H4(CN)2 (1,2-dicyanobenzene) and Me2PCH2CH2PMe2 (DMPE) have been also monitored by NMR at variable temperature. While for the acetonitrile complex and dicyanobenzene, trans-[FeH{C6H4(CN)2}(DPPE)2]+ is the only product detected with no evidence of the formation of reaction intermediates or side-products, small amounts of free DPPE are detected for the same reaction with the dihydrogen complex to form the same monosubstituted complex. Moreover, whereas the acetonitrile complex does not react with DMPE, free DPPE is the only DPPE-containing product after reaction of trans-[FeH(H2)(DPPE)2]+ with DMPE excess. The whole of the kinetic data and NMR observations are, on the one hand, consistent with a chelate ring-opening mechanism for the reactions of the dihydrogen complex and, on the other hand with a simple dissociative mechanism for the reactions of the acetonitrile complex. In all cases, the absolute values of ΔV[hair space][hair space] for these reactions are larger than usual and also show an unusual dependence on the nature of the solvent and the entering ligand.


References

  1. J. D. Atwood, Inorganic and Organometallic Reaction Mechanisms, Brooks/Cole, Monterey, CA, 1985, ch. 4 Search PubMed; J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987, p. 236 Search PubMed.
  2. A. Mezzetti, A. Del Zotto and P. Rigo, J. Chem. Soc., Dalton Trans., 1990, 2515 RSC; A. Mezzetti, A. Del Zotto, P. Rigo and E. Farnetti, J. Chem. Soc., Dalton Trans., 1991, 1525 RSC; L. D. Field, T. W. Hambley and B. C. K. Yau, Inorg. Chem., 1994, 33, 2009 CrossRef CAS; E. Rocchini, A. Mezzetti, H. Rüeger, U. Burckhardt, V. Gramlich, A. Del Zotto, P. Martuzzini and P. Rigo, Inorg. Chem., 1997, 36, 711 CrossRef CAS.
  3. M. Aresta, P. Giannoccaro, M. Rossi and A. Sacco, Inorg. Chim. Acta, 1971, 5, 115 CrossRef CAS.
  4. M. T. Bautista, E. P. Cappellani, S. D. Drouin, R. H. Morris, C. T. Schweitzer, A. Sella and J. Zubkowski, J. Am. Chem. Soc., 1991, 113, 4876 CrossRef.
  5. R. A. Henderson, J. Chem. Soc., Dalton Trans., 1988, 509 RSC.
  6. R. A. Henderson, J. Chem. Soc., Dalton Trans., 1988, 515 RSC.
  7. R. G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd edn., VCH, Weinheim, 1991, p. 394 and refs. therein Search PubMed.
  8. M. A. Máñez, M. J. Fernández-Trujillo and M. G. Basallote, Polyhedron, 1996, 15, 2305 CrossRef.
  9. M. G. Basallote, J. Durán, M. J. Fernández-Trujillo, G. González, M. A. Máñez and M. Martínez, Inorg. Chem., 1998, 37, 1623 CrossRef CAS.
  10. M. G. Basallote, J. Durán, M. J. Fernández-Trujillo and M. A. Máñez, Inorg. Chem., in the press Search PubMed.
  11. C. A. Helleren, R. A. Henderson and G. J. Leigh, J. Chem. Soc., Dalton Trans., 1999, 1213 RSC.
  12. M. G. Basallote, J. Durán, M. J. Fernández-Trujillo and M. A. Máñez, J. Chem. Soc., Dalton Trans., 1998, 3227 RSC.
  13. K. B. Reddy and R. van Eldik, Inorg. Chem., 1991, 30, 596 CrossRef CAS; G. Stochel, J. Chatlas, P. Martínez and R. van Eldik, Inorg. Chem., 1992, 31, 5480 CrossRef CAS.
  14. M. G. Basallote, J. Durán, M. J. Fernández-Trujillo, M. A. Máñez and J. Rodríguez de la Torre, J. Chem. Soc., Dalton Trans., 1998, 745 RSC; M. G. Basallote, J. Durán, M. J. Fernández-Trujillo and M. A. Máñez, J. Chem. Soc., Dalton Trans., 1998, 2205 RSC.
  15. J. E. Barclay, G. J. Leigh, A. Houlton and J. Silver, J. Chem. Soc., Dalton Trans., 1988, 2865 RSC.
  16. M. V. Baker, L. D. Field and D. J. Young, J. Chem. Soc., Chem. Commun., 1988, 546 RSC.
  17. S. C. Davies, R. A. Henderson, D. L. Hughes and K. E. Oglieve, J. Chem. Soc., Dalton Trans., 1998, 425 RSC.
  18. C. Bianchini, A. Meli, M. Peruzzini, P. Frediani, C. Bohanna, M. A. Esteruelas and L. A. Oro, Organometallics, 1992, 11, 138 CrossRef CAS.
  19. B. Chin, A. J. Lough, R. H. Morris, C. T. Schweitzer and C. D'Agostino, Inorg. Chem., 1994, 33, 6278 CrossRef CAS.
  20. R. H. Morris, J. F. Sawyer, M. Shiralian and J. D. Zubkowski, J. Am. Chem. Soc., 1985, 107, 5581 CrossRef CAS.
  21. S. D. Ittel, C. A. Tolman, P. J. Krusic, A. D. English and J. P. Jesson, Inorg. Chem., 1978, 17, 3432 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.