Activation of H2 by halogenocarbonylbis(phosphine)rhodium(I) complexes. The use of parahydrogen induced polarisation to detect species present at low concentration

(Note: The full text of this document is currently only available in the PDF Version )

Paul D. Morran, Simon B. Duckett, Peter R. Howe, John E. McGrady, Simon A. Colebrooke, Richard Eisenberg, Martin G. Partridge and Joost A. B. Lohman


Abstract

Complexes of the form RhX(CO)(PR3)2 [X = Cl, Br or I; R = Me or Ph] reacted with H2 to form a series of binuclear complexes of the type (PR3)2H2Rh(µ-X)2Rh(CO)(PR3) [X = Cl, Br or I, R = Ph; X = I, R = Me] and (PMe3)2(X)HRh(µ-H)(µ-X)Rh(CO)(PMe3) [X = Cl, Br or I] according to parahydrogen sensitised 1H, 13C, 31P and 103Rh NMR spectroscopy. Analogous complexes containing mixed halide bridges (PPh3)2H2Rh(µ-X)(µ-Y)Rh(CO)(PPh3) [X, Y = Cl, Br or I; X ≠ Y] are detected when RhX(CO)(PPh3)2 and RhY(CO)(PPh3)2 are warmed together with p-H2. In these reactions only one isomer of the products (PPh3)2H2Rh(µ-I)(µ-Cl)Rh(CO)(PPh3) and (PPh3)2H2Rh(µ-I)(µ-Br)Rh(CO)(PPh3) is formed in which the µ-iodide is trans to the CO ligand of the rhodium(I) centre. When (PPh3)2H2Rh(µ-Cl)(µ-Br)Rh(CO)(PPh3) is produced in the same way two isomers are observed. The mechanism of the hydrogen addition reaction is complex and involves initial formation of RhH2X(CO)(PR3)2 [R = Ph or Me], followed by CO loss to yield RhH2X(PR3)2. This intermediate is then attacked by the halide of a precursor complex to form a binuclear species which yields the final product after PR3 loss. The (PPh3)2H2Rh(µ-X)2Rh(CO)(PPh3) systems are shown to undergo hydride self exchange by exchange spectroscopy with rates of 13.7 s–1 for the (µ-Cl)2 complex and 2.5 s–1 for the (µ-I)2 complex at 313 K. Activation parameters indicate that ordering dominates up to the rate determining step; for the (µ-Cl)2 system ΔH[hair space]  = 52 ± 9 kJ mol–1 and ΔS[hair space]  = –61 ± 27 J K–1 mol–1. This process most likely proceeds via halide bridge opening at the rhodium(III) centre, rotation of the rhodium(III) fragment around the remaining halide bond and bridge re-establishment. If the triphenylphosphine ligands are replaced by trimethylphosphine distinctly different reactivity is observed. When RhX(CO)(PMe3)2 [X = Cl or Br] is warmed with p-H2 the complex (PMe3)2(X)HRh(µ-H)(µ-X)Rh(CO)(PMe3) [X = Cl or Br] is detected which contains a bridging hydride trans to the rhodium(I) PMe3 ligand. However, when X = I, the situation is far more complex, with (PMe3)2H2Rh(µ-I)2Rh(CO)(PMe3) observed preferentially at low temperatures and (PMe3)2(I)HRh(µ-H)(µ-I)Rh(CO)(PMe3) at higher temperatures. Additional binuclear products corresponding to a second isomer of (PMe3)2(I)HRh(µ-H)(µ-I)Rh(CO)(PMe3), in which the bridging hydride is trans to the rhodium(I) CO ligand, and (PMe3)2HRh(µ-H)(µ-I)2Rh(CO)(PMe3) are also observed in this reaction. The relative stabilities of related systems containing the phosphine PH3 have been calculated using approximate density functional theory. In each case, the (µ-X)2 complex is found to be the most stable, followed by the (µ-H)(µ-X) species with hydride trans to PH3.


References

  1. C. R. Bowers, D. H. Jones, N. D. Kurur, J. A. Labinger, M. G. Pravica and D. P. Weitekamp, Adv. in Magn. Reson., 1990, 14, 269 Search PubMed; J. Natterer and J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc., 1997, 31, 293 CrossRef; C. J. Sleigh and S. B. Duckett, Prog. Nucl. Magn. Reson. Spectrosc., 1999, 34, 71 CrossRef.
  2. T. C. Eisenschmid, R. U. Kirss, P. P. Deutsch, S. I. Hommeltoft, R. Eisenberg, J. Bargon, D. G. Lawler and A. L. Balch, J. Am. Chem. Soc., 1987, 109, 8089 CrossRef CAS.
  3. C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc., 1987, 109, 5541 CrossRef CAS.
  4. C. R. Bowers and D. P. Weitekamp, Phys. Rev. Lett., 1986, 57, 2645 CrossRef CAS.
  5. M. Jang, S. B. Duckett and R. Eisenberg, Organometallics, 1996, 15, 2863 CrossRef CAS; S. B. Duckett, R. J. Mawby and M. G. Partridge, Chem. Commun., 1996, 383 RSC.
  6. T. C. Eisenschmid, J. McDonald, R. Eisenberg and R. G. Lawler, J. Am. Chem. Soc., 1989, 111, 7267 CrossRef CAS; J. Barkemeyer, M. Haake and J. Bargon, J. Am. Chem. Soc., 1995, 117, 2927 CrossRef CAS.
  7. S. B. Duckett, C. L. Newell and R. Eisenberg, J. Am. Chem. Soc., 1993, 115, 1156 CrossRef CAS; M. Haake, J. Natterer and J. Bargon, J. Am. Chem. Soc., 1996, 118, 8688 CrossRef CAS.
  8. J. Barkemeyer, J. Bargon, H. Sengstschmid and R. Freeman, J. Magn. Reson. Ser. A, 1996, 120, 129 CrossRef CAS.
  9. H. Sengstschmid, R. Freeman, J. Barkemeyer and J. Bargon, J. Magn. Reson. Ser. A, 1996, 120, 249 CrossRef CAS.
  10. J. Natterer, J. Barkemeyer and J. Bargon, J. Magn. Reson. Ser. A, 1996, 123, 253 CrossRef CAS.
  11. S. B. Duckett, G. K. Barlow, M. G. Partridge and B. A. Messerle, J. Chem. Soc., Dalton. Trans., 1995, 3427 RSC; S. B. Duckett, R. J. Mawby and M. G. Partridge, Chem. Commun., 1996, 383 RSC; S. P. Millar, M. Jang, R. J. Lachicotte and R. Eisenberg, Inorg. Chim. Acta, 1998, 270, 363 CrossRef CAS.
  12. B. A. Messerle, C. J. Sleigh, M. G. Partridge and S. B. Duckett, J. Chem. Soc., Dalton Trans., 1999, 1429 RSC.
  13. S. Hasnip, S. B. Duckett, D. R. Taylor and M. J. Taylor, Chem. Commun., 1998, 923 RSC; S. P. Millar, D. L. Zubris, J. E. Bercaw and R. Eisenberg, J. Am. Chem. Soc., 1998, 120, 5329 CrossRef CAS; C. J. Sleigh, S. B. Duckett, R. J. Mawby and J. P. Lowe, Chem. Commun., 1999, 1223 RSC.
  14. S. B. Duckett, C. L. Newell and R. Eisenberg, J. Am. Chem. Soc., 1994, 116, 10548 CrossRef CAS.
  15. A. Harthun and J. Bargon, Angew. Chem., Int. Ed. Engl., 1997, 109, 1103 CrossRef.
  16. L. Vallarino, J. Chem. Soc., 1957, 2287 RSC.
  17. J. A. Osborn, F. H. Jardine, J. F. Young and G. Wilkinson, J. Chem. Soc. A, 1966, 1711 RSC.
  18. P. C. Ford, T. L. Netzel, C. T. Spillett and D. B. Poureau, Pure Appl. Chem., 1990, 62, 1091 CAS; C. T. Spillett and P. C. Ford, J. Am. Chem. Soc., 1989, 111, 1932 CrossRef CAS; D. A. Wink and P. C. Ford, J. Am. Chem. Soc., 1987, 109, 436 CrossRef CAS.
  19. A. J. Kunin and R. Eisenberg, Organomet., 1988, 7, 2124 CrossRef CAS.
  20. L. Vaska and M. F. Wernke, Trans., N. Y. Acad. Sci., 1971, 33, 80 Search PubMed.
  21. S. B. Duckett and R. Eisenberg, J. Am. Chem. Soc., 1993, 115, 5292 CrossRef CAS; B. Duckett, R. Eisenberg and A. S. Goldman, J. Chem. Soc., Chem Commun., 1993, 1185 RSC; P. D. Morran, S. A. Colebrooke, S. B. Duckett, J. A. B. Lohman and R. Eisenberg, J. Chem. Soc., Dalton Trans., 1998, 3363 RSC.
  22. R. H. Summerville and R. Homann, J. Am. Chem. Soc., 1979, 101, 3821 CrossRef; S. Shaik, R. Homann, C. R. Fisel and R. Summerville, J. Am. Chem. Soc., 1980, 102, 4555 CrossRef; G. Aullón, G. Ujaque, A. Lledós, S. Alvarez and P. Alemany, Inorg. Chem., 1998, 37, 804 CrossRef CAS.
  23. A. Dedieu, Inorg. Chem., 1980, 19, 375 CrossRef CAS; C. Daniel, N. Koga, J. Han, X. Y. Fu and K. Morokuma, J. Am. Chem. Soc., 1988, 110, 3773 CrossRef CAS; N. Koga and K. Morokuma, J. Phys. Chem, 1990, 94, 5454 CrossRef CAS; P. Margl, T. Ziegler and P. E. Blöchl, J. Am. Chem. Soc., 1995, 117, 12625 CrossRef CAS; G. P. Rosini, F. C. Liu, K. Krogh-Jesperson, A. S. Goldman, C. B. Li and S. P. Noland, J. Am. Chem. Soc., 1998, 120, 9256 CrossRef CAS.
  24. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989 Search PubMed.
  25. G. Bodenhausen and R. R. Ernst, J. Am. Chem. Soc., 1982, 104, 1304 CrossRef CAS.
  26. T. Ziegler, Chem. Rev., 1991, 91, 651 CrossRef CAS.
  27. ADF 2.3.0 Theoretical Chemistry Vrije Univeriteit Amsterdam E. J. Baerends, E. D. Ellis and P. Ros, Chem. Phys., 1973, 2, 42 Search PubMed; G. te Velde and E. J. Baerends, J. Comput. Phys., 1992, 99, 84.
  28. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  29. A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS.
  30. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef.
  31. L. Versluis and T. Ziegler, J. Chem. Phys., 1988, 88, 322 CrossRef CAS.
  32. C. A. Tolman, P. Z. Meakin, D. L. Lindner and J. P. Jesson, J. Am. Chem. Soc., 1974, 96, 2762 CrossRef CAS; D. W. Meek and T. J. Mazanec, Acc. Chem. Res., 1981, 14, 266 CrossRef CAS.
  33. C. J. Sleigh, S. B. Duckett and B. A. Messerle, Chem. Commun., 1996, 2395 RSC.
  34. I. J. Colquhoun and W. McFarlane, J. Magn. Reson., 1982, 46, 525 CAS.
  35. K.-C. Shih and A. S. Goldman, Organometallics, 1993, 12, 3390 CrossRef CAS.
  36. E. B. Meier, R. R. Burch and E. L. Muetterties, J. Am. Chem. Soc., 1982, 104, 2661 CrossRef CAS.
  37. A. J. Sivak and E. L. Muetterties, J. Am. Chem. Soc., 1979, 101, 4878 CrossRef CAS.
  38. H. Kessler, M. Gehrke and C. Griesinger, Angew. Chem., Int. Ed. Engl., 1988, 27, 490 CrossRef.
  39. S. Hasnip, S. B. Duckett, D. R. Taylor, G. K. Barlow and M. J. Taylor, Chem. Commun., 1999, 889 RSC.
  40. B. E. Hauger, D. Gusev and K. G. Caulton, J. Am. Chem. Soc., 1994, 116, 208 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.