Preparation and structural elucidation of novel cis ruthenium(II) bis(bipyridine) sulfoxide complexes[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Dusan Hesek, Yoshihisa Inoue, Simon R. L. Everitt, Hitoshi Ishida, Mieko Kunieda and Michael G. B. Drew


Abstract

Four novel cis-ruthenium bis(bipyridine) sulfoxide complexes with the general formula cis-[Ru(A)2(B)(Cl)]X (2, A = 2,2′-bipyridine (bpy), B = dimethyl sulfoxide (DMSO); 3, A = 4,4′-dimethyl-2,2′-bipyridine (dmbpy), B = DMSO; 4, A = bpy, B = tetramethylene sulfoxide (TMSO); and 5, A = dmbpy, B = TMSO; X = Cl, I, PF6 or ClO4) were synthesized from cis-[Ru(bpy)2Cl2] 1 or trans-[Ru(dmbpy)2Cl2] 6 in the substrate sulfoxide solutions at 60–120 °C, i.e. by a thermal process. This cis selectivity is in contrast to previously reported results. However, photoirradiation of 1 in the presence of DMSO selectively produced trans-ruthenium bis(bipyridine) sulfoxide; when 6 was photoirradiated in the presence of DMSO cis-[Ru(dmbpy)2(DMSO)Cl]Cl was the sole product. These complexes were fully characterized by elemental analysis, IR, UV/vis, 1H, 13C and 2-D NMR spectroscopy. The sulfoxide ligands co-ordinate through a Ru–S bond in all cases. The NMR studies of 2 imply that no rotation around the Ru–S bond occurs, in accord with quantum mechanics calculations. Crystallographic structural determinations of 2·PF6 (from acetone–diethyl ether) and 2·I (from water) showed that both complexes share similar octahedral geometries, but different conformations were found for the sulfoxide ligands with Cl–Ru–S–O dihedral angles of 121.6 and 56.3°, respectively, thus demonstrating that a different energetically favored conformation may exist in low or high dielectric environment. The stability of complexes 2–5 allowed separation into their Δ and Λ enantiomers, and the circular dichroism spectra were obtained. Thermal substitution reactions were also carried out using 2·Cl which was converted into cis-[Ru(bpy)2Cl2] 1 or cis-[Ru(bpy)2I2] 7. Several examples in which the resolved complex Δ-2·PF6 reacts with bipyridine nucleophiles with nearly complete retention of chirality are also given.


References

  1. V. Balzani, A. Juris, M. Venturi, S. Campagna and S. Serroni, Chem. Rev., 1996, 96, 759 CrossRef.
  2. A. Magnuson, H. Berglund, P. Korall, L. Hammarström, B. Åkermark, S. Styring and L. Sun, J. Am. Chem. Soc., 1997, 119, 10720 CrossRef CAS.
  3. T. J. Meyer, Acc. Chem. Res., 1989, 22, 163 CrossRef CAS.
  4. K. Kalyanasundaram, Coord. Chem. Rev., 1982, 46, 159 CrossRef.
  5. P. R. Ashton, R. Ballardini, V. Balzani, E. C. Constable, A. Credi, O. Locian, S. J. Langford, J. A. Preece, L. Prodi, E. R. Schofield, N. Spencer, J. F. Stoddart and S. Wenger, Chem. Eur. J., 1998, 4, 2413 CrossRef CAS.
  6. T. J. Rutherford, P. A. Pellegrini, J. Aldrich-Wright, P. C. Junk and F. R. Keene, Eur. J. Inorg. Chem., 1998, 1677 CrossRef CAS.
  7. N. C. Fletcher, P. C. Junk, D. A. Reitsma and F. R. Keene, J. Chem. Soc., Dalton Trans., 1998, 133 RSC.
  8. T. Tada, J. Sci. Hiroshima Univ., Ser. A: Phys. Chem., 1982, 46, 73 Search PubMed.
  9. J. A. Arce Sagues, R. D. Gillard, D. H. Smalley and P. A. Williams, Inorg. Chim. Acta, 1980, 43, 211 CrossRef.
  10. H. Mürner, P. Belser and A. von Zelewsky, J. Am. Chem. Soc., 1996, 118, 7989 CrossRef CAS.
  11. N. C. Fletcher, F. R. Keene, H. Viebrock and A. von Zelewsky, Inorg. Chem., 1997, 36, 1113 CrossRef CAS.
  12. X. Hua and A. von Zelewsky, Inorg. Chem., 1991, 30, 3796 CrossRef CAS.
  13. X. Hua and A. von Zelewsky, Inorg. Chem., 1995, 34, 5791 CrossRef CAS.
  14. T. J. Rutherford, M. G. Quagliotto and F. R. Keene, Inorg. Chem., 1995, 34, 3857 CrossRef CAS.
  15. D. Hesek, Y. Inoue, S. R. L. Everitt, H. Ishida, M. Kunieda and M. G. B. Drew, Tetrahedron: Asymmetry, 1998, 9, 4089 CrossRef CAS.
  16. M. Calligaris and O. Carugo, Coord. Chem. Rev., 1996, 153, 83 CrossRef CAS.
  17. J. A. Davies, Adv. Inorg. Chem. Radiochem., 1981, 24, 115 CAS.
  18. F. A. Cotton and R. Francis, J. Inorg. Nucl. Chem., 1961, 17, 62 CAS.
  19. I. Lindquist and P. Einarrson, Acta Chem. Scand., 1959, 13, 420.
  20. M. Calligaris, P. Faleschini, F. Todone, E. Alessio and S. Geremia, J. Chem. Soc., Dalton Trans., 1995, 1653 RSC.
  21. B. J. Coe, T. J. Meyer and P. S. White, Inorg. Chem., 1993, 32, 4012 CrossRef CAS.
  22. D. Hesek, Y. Inoue and S. R. L. Everitt, Chem. Lett., 1999, 109 CrossRef CAS.
  23. M. Khan, G. Ramachandraiah and R. Shukla, Polyhedron, 1992, 11, 3075 CrossRef CAS.
  24. D. Hesek, Y. Inoue, S. R. L. Everitt, H. Ishida, M. Kunieda and M. G. B. Drew, unpublished work.
  25. C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
  26. H. Guo, S. Sirois, D. Nguyen and D. R. Salahub, Density functional theory and its applications to hydrogen bonded systems. Theoretical treatment of hydrogen bonding, ed. H. Hadzi, Wiley, New York, 1997 Search PubMed.
  27. S. Sirois, E. Proynov, D. Nguyen and D. R. Salahub, J. Chem. Phys., 1997, 107, 6770 CrossRef CAS.
  28. I. P. Evans, A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 204 RSC.
  29. P. S. Braterman, B. C. Noble and R. D. Peacock, J. Phys. Chem., 1986, 90, 4913 CrossRef CAS.
  30. B. Bosnich, Inorg. Chem., 1968, 7, 2379 CrossRef CAS.
  31. A. Yamagishi, K. Naing, Y. Goto, M. Taniguchi and M. Takahashi, J. Chem. Soc., Dalton Trans., 1994, 2085 RSC.
  32. B. T. Patterson and F. R. Keene, Inorg. Chem., 1998, 37, 645 CrossRef CAS.
  33. X. Hua and A. G. Lappin, Inorg. Chem., 1995, 34, 992 CrossRef CAS.
  34. D. Hesek, Y. Inoue, S. R. L. Everitt, H. Ishida, M. Kunieda and M. G. B. Drew, Chem. Commun., 1999, 403 RSC.
  35. G. M. Sheldrick, SHELXL, University of Göttingen, 1997.
  36. P. A. Lay, A. M. Sargeson and H. Taube, Inorg. Synth., 1986, 24, 291 CAS.
  37. G. te Velde and E. J. Baerends, J. Comput. Phys., 1992, 99, 84 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.