Structural studies of the chiral lithium amides [{PhC(H)Me}2NLi] and [PhCH2{PhC(H)Me}NLi·THF] derived from α-methylbenzylamine[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

David R. Armstrong, Kenneth W. Henderson, Alan R. Kennedy, William J. Kerr, Francis S. Mair, Jennifer H. Moir, Paul H. Moran and Ronald Snaith


Abstract

Reaction of (R,R′)- or (S,S′)-bis(1-phenylethyl)amine with nBuLi in hexane solution gave the chiral amide [{PhC(H)Me}2NLi] 1. Complex 1 crystallises with approximate D3 symmetry as a ring trimer (13) from hexane solution, as determined by X-ray crystallography. In direct contrast to the crystal structure of the related compound dibenzylamidolithium, [{(PhCH2)2NLi}3], no significant agostic Li[hair space][hair space]· · ·[hair space][hair space]C(H) contacts are present in 13. Solution 1H and 7Li NMR spectra of 1 in d8-toluene show the presence of two distinct aggregated species which have been assigned as a trimer and a monomer. The complex [PhCH2{PhC(H)Me}NLi·THF] 2·THF, was prepared by reaction of nBuLi with (R)-N-benzyl-α-methylbenzylamine in a hexane–THF solution and has been determined by X-ray crystallography to adopt a dimeric structure (22·2THF) in the solid state with C1 symmetry. As in 13, no short Li[hair space][hair space]· · ·[hair space][hair space]C(H) contacts are present in 22·2THF. The lack of Li[hair space][hair space]· · ·[hair space][hair space]C(H) interactions in both 13 and 22·2THF suggests that the rotameric conformations adopted for the benzyl groups in the complexes are governed mainly by steric effects. Using ab initio molecular orbital calculations (HF/6-31G*), the minimum energy structure for unsolvated monomeric 11 was determined to be a C2 symmetric molecule, I, where the faces of both phenyl groups are directed towards the metal, maximising the Li–aromatic π interactions. The related C2 symmetric molecule with both methyl groups directed towards the metal is 8.68 kcal mol–1 less stable than I. Therefore, in the absence of aggregation and external solvation, significant stabilisation is achieved through Li[hair space][hair space]· · ·[hair space][hair space]C(H) benzyl interactions. The energy barrier to rotation for one benzyl sidearm for geometry I is 4.76 kcal mol–1, representing a significant lifetime for this conformer.


References

  1. For pertinent reviews see: P. O'Brien, J. Chem. Soc., Perkin Trans. 1, 1998, 1439 Search PubMed; P. J. Cox and N. S. Simpkins, Tetrahedron: Asymmetry, 1991, 2, 1 RSC; K. Koga, J. Synth. Org. Chem., Jpn., 1990, 48, 463 CrossRef CAS; Pure Appl. Chem., 1994, 66, 1487 Search PubMed; K. Koga and M. Shindo, J. Synth. Org. Chem., Jpn., 1995, 52, 1021 Search PubMed.
  2. G. Hilmersson and O. Davidsson, J. Org. Chem., 1995, 60, 7660 CrossRef CAS; G. Hilmersson, P. Ahlberg and O. Davidsson, J. Am. Chem. Soc., 1996, 118, 3539 CrossRef CAS; P. I. Arvidsson, G. Hilmersson and P. Ahlberg, J. Am. Chem. Soc., 1999, 121, 1883 CrossRef CAS.
  3. G. Overberger, N. P. Marullo and R. G. Hiskey, J. Am. Chem. Soc., 1961, 83, 1374 CrossRef; J. K. Whitesell and S. W. Felman, J. Org. Chem., 1980, 45, 755 CrossRef CAS; C. M. Cain, R. P. C. Cousins, G. Coumbarides and N. S. Simpkins, Tetrahedron, 1990, 46, 523 CrossRef CAS The amine hydrochloride is commercially available from Oxford Asymmetry, 57 Milton Park, Abington, Oxfordshire, UK.
  4. K. Sugasawa, M. Shindo, H. Noguchi and K. Koga, Tetrahedron Lett., 1996, 37, 7377 CrossRef CAS.
  5. A. J. Edwards, S. Hockey, F. S. Mair, P. R. Raithby, R. Snaith and N. S. Simpkins, J. Org. Chem., 1993, 58, 6942 CrossRef.
  6. (a) D. Mootz, A. Zinnius and B. Böttcher, Angew. Chem., Int. Ed. Engl., 1969, 8, 378 CAS; (b) B. Wrackmeyer, B. Schwarze, J. Weidinger and W. Milius, Z. Naturforsch., Teil B, 1997, 52, 431 CAS; (c) M. Rannenberg, H.-D. Hausen and J. Weidlein, J. Organomet. Chem., 1989, 376, C27 CrossRef CAS; (d) B. Gemünd, H. Nöth, H. Sachdev and M. Schmidt, Chem. Ber., 1996, 129, 1335 CrossRef; (e) D. R. Armstrong, D. R. Baker, F. J. Craig, R. E. Mulvey, W. Clegg and L. Horsburgh, Polyhedron, 1996, 15, 3533 CrossRef CAS; (f) D. Barr, W. Clegg, R. E. Mulvey and R. Snaith, J. Chem. Soc., Chem. Commun., 1984, 285 RSC.
  7. M. F. Lappert, M. J. Slade, A. Singh, J. L. Atwood, R. D. Rodger and R. Shakir, J. Am. Chem. Soc., 1983, 105, 302 CrossRef CAS.
  8. E. Weiss, Angew. Chem., Int. Ed. Engl., 1993, 32, 1501 CrossRef; K. Gregory, P. v. R. Schleyer and R. Snaith, Adv. Inorg. Chem., 1991, 37, 47 CrossRef CAS; R. E. Mulvey, Chem. Soc. Rev., 1991, 20, 167; 1998, 27, 339 Search PubMed.
  9. (a) D. Barr, W. Clegg, R. E. Mulvey and R. Snaith, J. Chem. Soc., Chem. Commun., 1984, 287 RSC; (b) D. R. Armstrong, R. E. Mulvey, G. T. Walker, D. Barr, R. Snaith, W. Clegg and D. Reed, J. Chem. Soc., Dalton Trans., 1988, 617 RSC.
  10. D. Barr, W. Clegg, R. E. Mulvey, R. Snaith and K. Wade, J. Chem. Soc., Chem. Commun., 1986, 295 RSC; D. R. Armstrong, D. Barr, R. Snaith, W. Clegg, R. E. Mulvey, K. Wade and D. Reed, J. Chem. Soc., Dalton Trans., 1987, 1071 RSC; D. Barr, R. Snaith, W. Clegg, R. E. Mulvey and K. Wade, J. Chem. Soc., Dalton Trans., 1987, 2141 RSC; D. R. Armstrong, D. Barr, W. Clegg, R. E. Mulvey, D. Reed, R. Snaith and K. Wade, J. Chem. Soc., Chem. Commun., 1986, 869 RSC.
  11. P. C. Andrews, D. R. Armstrong, D. R. Baker, R. E. Mulvey, W. Clegg, L. Horsburgh, P. A. O'Neil and D. Reed, Organometallics, 1995, 14, 427 CrossRef CAS.
  12. W. Clegg, S. T. Liddle, K. W. Henderson, F. E. Keenan, A. R. Kennedy, A. E. McKeown and R. E. Mulvey, J. Organomet. Chem., 1999, 572, 283 CrossRef CAS.
  13. D. R. Armstrong, P. G. Perkins and J. J. P. Stewart, J. Chem. Soc., Dalton Trans., 1973, 2273 RSC; T. N. Bell, K. A. Perkins and P. G. Perkins, J. Chem. Soc., Faraday Trans. 1, 1981, 1779 RSC; R. E. Mulvey, M. E. O'Neil, K. Wade and R. Snaith, Polyhedron, 1986, 5, 1437 CrossRef CAS.
  14. For reviews on 6Li, 15N NMR spectroscopy see: D. B. Collum, Acc. Chem. Res., 1993, 26, 227; 1992, 25, 448 Search PubMed.
  15. M. Majewski and D. M. Gleave, J. Org. Chem., 1992, 57, 3599 CrossRef CAS.
  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.
  17. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257 CrossRef CAS; P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213 CrossRef CAS; J. D. Dill and J. A. Pople, J. Chem. Phys., 1975, 62, 2921 CrossRef CAS.
  18. P. G. Williard, Q. Y. Liu and L. Lochmann, J. Am. Chem. Soc., 1992, 114, 348 CrossRef CAS.
  19. D. F. Shriver and M. A. Drezdzon, Manipulation of Air Sensitive Compounds, 2nd edn., Wiley, New York, 1986 Search PubMed.
  20. T. Kottke and D. Stalke, J. Appl. Crystallogr., 1993, 26, 615 CrossRef.
  21. W. J. Hehre, L. Radon, P. v. R. Schleyer and J. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  22. An excellent review of past and present theoretical studies of lithium compounds can be found in Lithium Chemistry, A Theoretical and Experimental Overview, eds. A. M. Sapse and P. v. R. Schleyer, Wiley, New York, 1995 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.