A tetrapodal pentaamine for stabilizing square pyramidal co-ordination modules: synthesis, structure and reactivity of cobalt(III) complexes of 2,2′-dimethyl-2,2′-iminodimethylenebis(1,3-propanediamine)

(Note: The full text of this document is currently only available in the PDF Version )

Birgit Fabius, Rodney J. Geue, Rita G. Hazell, W. Gregory Jackson, Finn Krebs Larsen, C. Jin Qin and Alan M. Sargeson


Abstract

A facile synthesis of the tetrapodal pentaamine ligand 2,2′-dimethyl-2,2′-iminodimethylenebis(1,3-propanediamine), ditame, has been achieved and some unusual effects of its topology and preference for square pyramidal co-ordination in cobalt(III) complexes explored. Potential influences of the ditame structure on substitution chemistry in [Co(ditame)X]n+ systems are defined by crystal structure analyses for [Co(ditame)Cl][ZnCl4] and [Co(ditame)(NH3)]Cl[ZnCl4]. Proton exchange, nitrogen inversion and chloride anation reactivity, and substitution stereochemistry studies have been carried out on the [Co(ditame)Cl]2+ and [Co(ditame)(OD2)]3+ complexes by using 13C NMR spectroscopy. The base hydrolysis rate constant for [Co(ditame)Cl]2+ (68 dm3 mol–1 s–1 at 25 °C, I 1.0 mol dm–3) is 250 fold greater than that for the analogous [Co(NH3)5Cl]2+ ion. This difference is attributed to an enhanced trans influence and a bond-coupled co-operative mechanism that facilitate the Cl dissociation in the conjugate base of [Co(ditame)Cl]2+. The bond-coupled mechanism also aids dissociative processes for the relatively fast aquation and anation chemistry of [Co(ditame)Cl]2+ and [Co(ditame)(OH2)]3+. Two results for the reactivity of the [Co(ditame)X]n+ (X = Cl or H2O) ions are attributed to restricted rearrangement of the square pyramidal Co(ditame) fragment in the course of Xn – 3 substitutions. One is the very small amount of [Co(ditame)(N3)]2+ (1.1 ± 0.3%) formed in competition with [Co(ditame)(OH)]2+ during base hydrolysis in aqueous 1 mol dm–3 NaN3, which indicates an unusually short lifetime for the proposed intermediate. Also, there were no species detected that arise from partial dissociation of the amine, neither in the base hydrolysis nor in the aquation and anation experiments, even at temperatures >50 °C and in the presence of strong acids. There are important consequences for substitution chemistry in other [M(pentaamine)X]n+ systems where rearrangement of the MN5(amine) fragment is restricted. The quantitatively simple substitution processes also make these reagents valuable as protective groups in synthetic applications such as peptide cleavage and synthesis.


References

  1. F. Lions, Rev. Pure Appl. Chem., 1969, 19, 177 Search PubMed; D. St. C. Black and A. J. Hartshorn, Coord. Chem. Rev., 1972–1973, 9, 219 Search PubMed.
  2. R. R. Holmes, Prog. Inorg. Chem., 1984, 32, 119 CAS; J. S. Wood, Prog. Inorg. Chem., 1972, 16, 227 CAS.
  3. B. J. Hoskins and F. D. Whillans, Coord. Chem. Rev., 1972–1973, 9, 365 Search PubMed; R. Morassi, I. Bertini and L. Sacconi, Coord. Chem. Rev., 1973, 11, 343 CrossRef CAS.
  4. R. J. Geue, unpublished work.
  5. M. G. McCarthy, PhD Thesis, The Australian National University, 1985.
  6. R. J. Geue, M. G. McCarthy, A. M. Sargeson, P. Jørgensen, R. G. Hazell and F. K. Larsen, Inorg. Chem., 1985, 24, 2559 CrossRef CAS.
  7. R. J. Geue, K. Hegetschweiler, O. Mass and A. M. Sargeson, unpublished data; O. Mass, PhD Dissertation, Universität des Saarlandes, 1999.
  8. E. B. Fleischer, A. E. Gebala, A. Levey and P. A. Tasker, J. Org. Chem., 1971, 36, 3042 CrossRef CAS; R. J. Geue and G. H. Searle, Aust. J. Chem., 1983, 36, 927 CAS.
  9. P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declerq and M. M. Woolfson, MULTAN, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, Universities of York and Louvain, 1980.
  10. N. W. Burnett and C. K. Johnson, ORTEP III, Report ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, TN, 1996.
  11. G. Kartha and F. R. Ahmed, Acta Crystallogr., 1960, 13, 532 CrossRef CAS.
  12. J. K. Beattie and C. J. Moore, Inorg. Chem., 1982, 21, 1292 CrossRef CAS.
  13. D. A. Buckingham, W. Marty and A. M. Sargeson, Inorg. Chem., 1974, 13, 2165 CrossRef CAS.
  14. N. E. Dixon, W. G. Jackson, W. Marty and A. M. Sargeson, Inorg. Chem., 1982, 21, 688 CrossRef CAS and refs. therein.
  15. P. A. Lay, Coord. Chem. Rev., 1991, 110, 213 CrossRef CAS.
  16. D. A. House and W. G. Jackson, unpublished work.
  17. R. J. Geue, M. G. McCarthy, A. M. Sargeson, B. W. Skelton and A. H. White, Inorg. Chem., 1985, 24, 1607 CrossRef CAS.
  18. W. G. Jackson and A. M. Sargeson, in Rearrangements in Ground and Excited States, ed. P. de Mayo, Academic Press, New York, 1980, vol. 2, pp. 321–335 Search PubMed.
  19. D. A. Buckingham, P. A. Marzilli and A. M. Sargeson, Inorg. Chem., 1969, 8, 1595 CrossRef CAS.
  20. I. I. Creaser and A. M. Sargeson, unpublished data.
  21. D. A. Buckingham, P. J. Cresswell and A. M. Sargeson, Inorg. Chem., 1975, 14, 1485 CrossRef CAS.
  22. (a) D. A. Buckingham, D. M. Foster, L. G. Marzilli and A. M. Sargeson, Inorg. Chem., 1970, 9, 11 CrossRef CAS; (b) M. Dwyer, PhD Thesis, The Australian National University, 1971; B. F. Anderson, J. D. Bell, D. A. Buckingham, P. J. Cresswell, G. J. Gainsford, L. G. Marzilli, G. B. Robertson and A. M. Sargeson, Inorg. Chem., 1977, 16, 3233 Search PubMed.
  23. L. S. Dong and D. A. House, Inorg. Chim. Acta, 1976, 19, 23 CrossRef CAS.
  24. F. Basolo and R. G. Pearson, Mechanisms of Inorganic Reactions, Wiley, New York, 2nd edn., 1967 Search PubMed.
  25. M. L. Tobe, Acc. Chem. Res., 1970, 3, 377 CrossRef CAS; Adv. Inorg. Bioinorg. Chem., 1983, 2, 1 and refs. therein Search PubMed.
  26. A. M. Sargeson, Pure Appl. Chem., 1973, 33, 527 CAS and refs. therein.
  27. D. A. Buckingham, P. J. Cresswell, A. M. Sargeson and W. G. Jackson, Inorg. Chem., 1981, 20, 1647 CrossRef CAS and refs. therein.
  28. W. G. Jackson, C. N. Hookey, M. L. Randall, P. Comba and A. M. Sargeson, Inorg. Chem., 1984, 23, 2473 CrossRef CAS and refs. therein.
  29. E. Ahmed, M. L. Tucker and M. L. Tobe, Inorg. Chem., 1975, 14, 1 CrossRef CAS; P. Comba and A. M. Sargeson, J. Chem. Soc., Chem. Commun., 1985, 51 RSC.
  30. M. Green and H. Taube, Inorg. Chem., 1963, 2, 948 CrossRef CAS.
  31. D. A. Buckingham, I. I. Olsen and A. M. Sargeson, J. Am. Chem. Soc., 1966, 88, 5443 CrossRef CAS.
  32. D. A. Buckingham, I. I. Olsen and A. M. Sargeson, J. Am. Chem. Soc., 1968, 90, 6654 CrossRef CAS.
  33. R. B. Jordan and A. M. Sargeson, Inorg. Chem., 1965, 4, 433 CrossRef CAS; D. A. Buckingham, I. I. Olsen and A. M. Sargeson, J. Am. Chem. Soc., 1967, 89, 5129; 1968, 90, 6539 Search PubMed.
  34. D. A. Buckingham, B. M. Foxman and A. M. Sargeson, Inorg. Chem., 1970, 9, 1790 CrossRef CAS.
  35. D. A. Buckingham, I. I. Olsen and A. M. Sargeson, Inorg. Chem., 1968, 7, 174 CrossRef CAS.
  36. T. Poth, H. Paulus, H. Elias, R. van Eldick and A. Grohmann, Eur. J. Inorg. Chem., 1999, 643 CrossRef CAS.
  37. J. A. Stanko and I. C. Paul, Inorg. Chem., 1967, 6, 486 CrossRef CAS; G. G. Messmer and E. L. Amma, Acta Crystallogr., Sect. B, 1968, 24, 417 CrossRef CAS.
  38. K. F. Purcell and J. C. Kotz, Inorganic Chemistry, W. B. Saunders, Philadelphia, 1977, ch. 13 Search PubMed.
  39. R. J. Geue, T. W. Hambley, J. M. Harroweld, A. M. Sargeson and M. R. Snow, J. Am. Chem. Soc., 1984, 106, 5478 CrossRef CAS.
  40. R. J. Balahura, G. Ferguson, B. L. Ruhl and R. G. Whikins, Inorg. Chem., 1983, 22, 3990 CrossRef CAS; I. J. Clark, R. J. Geue, L. M. Engelhardt, J. M. Harroweld, A. M. Sargeson and A. H. White, Aust. J. Chem., 1993, 46, 1485 CAS.
  41. R. J. Geue, C. J. Qin and A. M. Sargeson, unpublished work.
  42. M. F. Andreasen, S. Bagger, A. M. Sørensen and K. Wagner, J. Inorg. Biochem., 1995, 57, 271 CrossRef CAS; S. Bagger, K. Wagner, R. J. Geue and A. M. Sargeson, unpublished work.
  43. A. Höhn, R. J. Geue and A. M. Sargeson, J. Chem. Soc., Chem. Commun., 1990, 1473 RSC; K. Hegetschweiler, M. Weber, V. Huch, R. J. Geue, A. D. Rae, A. C. Willis and A. M. Sargeson, Inorg. Chem., 1998, 37, 6136 CrossRef CAS; R. J. Geue, A. Höhn, C. J. Qin, A. M. Sargeson and G. W. Walker, unpublished work.
  44. R. J. Geue, A. Höhn, S. F. Ralph, A. M. Sargeson and A. C. Willis, J. Chem. Soc., Chem. Commun., 1994, 1513 RSC.
  45. R. J. Geue, B. Korybut-Daszkiewicz and A. M. Sargeson, Chem. Commun., 1996, 1569 RSC.
  46. R. J. Geue, B. Korybut-Daszkiewicz and A. M. Sargeson, J. Chem. Soc., Chem. Commun., 1993, 1454 RSC; C. A. Behm, I. I. Creaser, B. Korybut-Daskiewicz, R. J. Geue, A. M. Sargeson and G. W. Walker, J. Chem. Soc., Chem. Commun., 1993, 1844 RSC.
  47. S. Gerba, R. J. Geue, S. F. Ralph, A. M. Sargeson and G. W. Walker, unpublished work.
  48. R. J. Geue, M. B. McDonnell, A. W. H. Mau, A. M. Sargeson and A. C. Willis, J. Chem. Soc., Chem. Commun., 1994, 667 RSC; R. J. Geue, A. J. Hendry and A. M. Sargeson, J. Chem. Soc., Chem. Commun., 1989, 1646 RSC; A. Höhn, R. J. Geue, A. M. Sargeson and A. C. Willis, J. Chem. Soc., Chem. Commun., 1989, 1648 RSC; K. N. Brown, R. J. Geue, T. W. Hambley, A. M. Sargeson and A. C. Willis, Chem. Commun., 1996, 567 RSC; R. J. Geue, C. J. Qin, S. F. Ralph, A. M. Sargeson, A. H. White and A. C. Willis, Chem. Commun., in the press Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.