Novel ruthenium(III) dimers Na2[{trans-RuCl4(Me2SO-S[hair space])}2(µ-L)] and [{mer,cis-RuCl3(Me2SO-S[hair space])(Me2SO-O)}2(µ-L)] (L = bridging heterocyclic N-donor ligand) closely related to the antimetastatic complex Na[trans-RuCl4(Me2SO-S[hair space])(Him)][hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Elisabetta Iengo, Giovanni Mestroni, Silvano Geremia, Mario Calligaris and Enzo Alessio


Abstract

The symmetrical dianionic and neutral ruthenium(III) dimers Na2[{trans-RuCl4(Me2SO-S[hair space])}2(µ-L)] 1 and [{mer,cis-RuCl3(Me2SO-S[hair space])(Me2SO-O)}2(µ-L)] 3 (L = pyrazine 1a, 3a; pyrimidine 1b; 4,4′-bipyridine 1c; 1,2-bis(4-pyridyl)ethane 1d; or 1,3-bis(4-pyridyl)propane 1e), which represent unprecedented examples in the general Creutz–Taube family of ruthenium dimers, were developed with the specific aim of assessing their antineoplastic properties. Each ruthenium center in 1 and 3 has a co-ordination environment similar to that of known anionic and neutral monomeric ruthenium(III) complexes endowed with a specific antimetastatic activity against animal model tumors. Beside the synthesis and spectroscopic characterization of the new dimers, and the structural characterization of 1a, 1b, 1c, and 3a, a thorough investigation of their chemical behavior in aqueous solution was made. At 25 °C and pH 7.4 the dianionic species 1a–1e maintain their dimeric structure and undergo rather slow stepwise chloride hydrolysis to yield the relatively inert diaqua species [{mer,cis-RuCl3(Me2SO-S[hair space])(H2O)}2(µ-L)]. At physiological pH dimers 1a–1e are also easily and quantitatively reduced by equivalent amounts of ascorbic acid to the corresponding RuII/II dimers which, in turn, undergo stepwise aquation with rates roughly comparable to those of the RuIII/III species of equal net charge. Since the reduction processes might occur also in vivo, the chemical behavior of the RuII/II dimers is relevant to understanding the biological mechanism of action of these compounds and was thus investigated in detail. The neutral dimer 3, which is scarcely soluble in aqueous solution, gives soluble dimeric species upon reduction with ascorbic acid. We found that reduction is accompanied by O to S linkage isomerization and by partial dissociation of the equatorial dmso. Overall, the dimeric structures of the new compounds are quite robust, both in the RuIII/III and in the RuII/II form, and they undergo aquation reactions similar to those of the monomeric analogs. However, while the monomeric species after aquation are either mono- or bi-functional binders, the new dimers might behave as bi- or even tetra-functional binders. Thus, it is likely that their interaction with biological targets might lead to adducts which are not accessible to the mononuclear species.


References

  1. (a) G. Mestroni, E. Alessio, G. Sava, S. Pacor and M. Coluccia, in Metal Complexes in Cancer Chemotherapy, ed. B. K. Keppler, VCH, Weinheim, 1993, pp. 157–185 Search PubMed; (b) G. Sava, S. Pacor, E. Alessio, G. Mestroni, R. Gagliardi, M. Cocchietto and M. Coluccia, Drugs of the Future, 1993, 18, 894 Search PubMed; (c) G. Mestroni, E. Alessio, G. Sava, S. Pacor, M. Coluccia and A. Boccarelli, Metal-Based Drugs, 1994, 1, 41 Search PubMed.
  2. G. Mestroni, E. Alessio and G. Sava, Int. Pat., WO 98/00431, 1998 Search PubMed.
  3. (a) G. Sava, I. Capozzi, K. Clerici, G. Gagliardi, E. Alessio and G. Mestroni, Clin. Exp. Metastasis, 1998, 16, 371 CrossRef CAS; (b) G. Sava, R. Gagliardi, M. Cocchietto, K. Clerici, I. Capozzi, M. Marella, E. Alessio, G. Mestroni and R. Milanino, Pathol. Oncol. Res., 1998, 4, 30 CrossRef CAS; (c) G. Sava, K. Clerici, I. Capozzi, M. Cocchietto, R. Gagliardi, E. Alessio, G. Mestroni and A. Perbellini, Anti-Cancer Drugs, 1999, 10, 129 CAS; (d) A. Bergamo, R. Gagliardi, V. Scarcia, A. Furlani, E. Alessio, G. Mestroni and G. Sava, J. Pharmacol. Exp. Ther., 1999, 298, 559 Search PubMed; (e) G. Sava, E. Alessio, A. Bergamo and G. Mestroni, in Topics in Biological Inorganic Chemistry, eds. M. J. Clarke and P. J. Sadler, Springer-Verlag, Berlin and Heidelberg, 1999, vol. 1, pp. 143–169 Search PubMed.
  4. E. Alessio, G. Balducci, A. Lutman, G. Mestroni, M. Calligaris and W. M. Attia, Inorg. Chim. Acta, 1993, 203, 205 CrossRef CAS.
  5. B. K. Keppler, W. Rupp, U. M. Juhl, H. Enders, R. Niebl and W. Balzer, Inorg. Chem., 1987, 26, 4366 CrossRef CAS.
  6. B. K. Keppler, M. Henn, U. M. Juhl, M. R. Berger, R. Niebl and F. E. Wagner, in Ruthenium and Other Non-Platinum Metal Complexes in Cancer Chemotherapy, ed. M. J. Clarke, Springer, Heidelberg, 1989, vol. 14, pp. 41–70 Search PubMed.
  7. N. Farrell, Y. Qu, U. Bierbach, M. Valsecchi and E. Menta, in Cisplatin—Chemistry and Biochemistry of a Leading Anticancer Drug, ed. B. Lippert, VHCA(Zurich) and Wiley-VCH(Weinheim), 1999, pp. 479–496 Search PubMed; N. Farrell, Comments Inorg. Chem., 1995, 16, 373 Search PubMed; Y. Qu, S. G. da Almeida and N. Farrell, Inorg. Chim. Acta, 1992, 201, 123 CrossRef CAS.
  8. E. Alessio, E. Iengo, G. Mestroni and G. Sava, It. Pat., MI99A000811, 1999 Search PubMed.
  9. M. D. Ward, Chem. Soc. Rev., 1995, 121 RSC; B. J. Coe, T. J. Meyer and P. S. White, Inorg. Chem., 1995, 34, 593 CrossRef CAS.
  10. (a) C. Creutz and H. Taube, J. Am. Chem. Soc., 1969, 91, 3988 CrossRef CAS; (b) C. Creutz and H. Taube, J. Am. Chem. Soc., 1973, 95, 1086 CrossRef CAS; (c) S. A. Adeyemi, E. C. Johnson, F. J. Miller and T. J. Meyer, Inorg. Chem., 1973, 12, 2371 CrossRef CAS; (d) C. Creutz, Prog. Inorg. Chem., 1983, 30, 1 CAS; (e) D. E. Richardson and H. Taube, Coord. Chem. Rev., 1984, 60, 107 CrossRef CAS.
  11. V. Balzani, A. Juris, M. Venturi, S. Campagna and S. Serroni, Chem. Rev., 1996, 96, 759 CrossRef.
  12. F. Felix and A. Ludi, Inorg. Chem., 1978, 17, 1782 CrossRef CAS.
  13. F. M. Hornung, F. Baumann, W. Kaim, J. A. Olabe, L. D. Slep and J. Fiedler, Inorg. Chem., 1998, 37, 311 CrossRef CAS.
  14. Y. Chen and R. E. Shepherd, Inorg. Chem., 1998, 37, 1249 CrossRef CAS.
  15. J. P. Collman, J. T. McDevitt, C. R. Leinder, G. T. Yee, J. B. Torrance and W. A. Little, J. Am. Chem. Soc., 1987, 109, 4606 CrossRef CAS.
  16. C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
  17. M. Calligaris and O. Carugo, Coord. Chem. Rev., 1996, 153, 83 CrossRef CAS.
  18. S. Geremia, E. Alessio and F. Todone, Inorg. Chim. Acta, 1996, 253, 87 CrossRef CAS.
  19. E. Alessio, E. Iengo, S. Zorzet, A. Bergamo, M. Coluccia, A. Boccarelli and G. Sava, J. Inorg. Biochem., in press Search PubMed.
  20. C. M. Duff and G. A. Heat, J. Chem. Soc., Dalton Trans., 1991, 2401 RSC.
  21. P. Ford, De F. P. Rudd, R. Gaunder and H. Taube, J. Am. Chem. Soc., 1968, 90, 1187 CrossRef CAS.
  22. Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 4, ch. 45, pp. 442–446 Search PubMed.
  23. O. M. Ni Dhubhghaill, W. R. Hagen, B. K. Keppler, K.-G. Lipponer and P. J. Sadler, J. Chem. Soc., Dalton Trans., 1994, 3305 RSC.
  24. P. E. Dumas and E. E. Mercer, Inorg. Chem., 1972, 11, 531 CrossRef CAS.
  25. M. Henn, E. Alessio, G. Mestroni, M. Calligaris and W. M. Attia, Inorg. Chim. Acta, 1991, 187, 39 CrossRef CAS.
  26. A. Yeh, N. Scott and H. Taube, Inorg. Chem., 1982, 21, 2542 CrossRef CAS; M. Sano and H. Taube, J. Am. Chem. Soc., 1991, 113, 2327 CrossRef CAS; A. Tomita and M. Sano, Inorg. Chem., 1994, 33, 5825 CrossRef; M. Sano and H. Taube, Inorg. Chem., 1994, 33, 705 CrossRef CAS.
  27. E. Alessio, G. Balducci, M. Calligaris, G. Costa, W. M. Attia and G. Mestroni, Inorg. Chem., 1991, 30, 609 CrossRef CAS.
  28. E. Alessio, G. Mestroni, G. Nardin, W. M. Attia, M. Calligaris, G. Sava and S. Zorzet, Inorg. Chem., 1988, 27, 4099 CrossRef CAS.
  29. G. Sava, S. Pacor, M. Coluccia, M. Mariggio, M. Cocchietto, E. Alessio and G. Mestroni, Drug Invest., 1994, 8, 150 Search PubMed.
  30. L. Messori, F. Kratz and E. Alessio, Metal-Based Drugs, 1996, 3, 1 Search PubMed.
  31. L. Messori, P. Orioli, D. Vullo, E. Alessio and E. Iengo, unpublished work.
  32. G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467 CrossRef.
  33. G. M. Sheldrick, SHELXL 93, Program for crystal structure refinement, Universität Göttingen, 1993.
Click here to see how this site uses Cookies. View our privacy policy here.