Linking metal centres with diimido ligands: synthesis, electronic and molecular structure and electrochemistry of organometallic ditungsten complexes [{WCl2(Ph2PMe)2(CO)}2(N–X–N)] (X = π-conjugated organic)

(Note: The full text of this document is currently only available in the PDF Version )

Graeme Hogarth, David G. Humphrey, Nikolas Kaltsoyannis, Woo-Sung Kim, Mo-yin (Venus) Lee, Tim Norman and Simon P. Redmond


Abstract

Tungsten(IV) diimido-bridged complexes [{WCl2(Ph2PMe)2(CO)}2(µ-N–X–N)] have been prepared via oxidative addition of diisocyanates to two equivalents of [WCl2(Ph2PMe)4]. para-Substituted monoimido complexes [WCl2(Ph2PMe)2(CO)(NC6H4X-p)] (X = I, Br or C[triple bond, length half m-dash]CPh) have also been prepared but attempts to couple the X = I complex as a route to diimido-bridged complexes were unsuccessful. All complexes are air-stable crystalline solids and five diimido (N–X–N = p-NC6H4N, p-N-o-MeC6H3N, p-N(o-MeOC6H3C6H3OMe-o)N, 1,5-NC10H6N or m-NC6H4N) and one monoimido complex (X = I) have been characterised crystallographically. All show the same gross structural features, namely a trans arrangement of phosphines and cis chlorides. The central aryl ring generally lies approximately in the Cl2(CO) plane (torsional angles 4.1–26.1°) except for one complex in which the ring lies almost perpendicular to this (torsional angle 80.2°). A series of density functional calculations conducted on model mono- and di-imido tungsten-(VI) and -(V) compounds indicated that the most stable aryl ring orientation is perpendicular to the plane containing the trans phosphines, i.e. as found in all cases except one (N–X–N = p-NC6H4N). The anomaly in the latter may be due to cocrystallisation with chlorobenzene. In order to assess the degree of communication between the tungsten(IV) centres through the highly π-conjugated diimido linkages, electrochemical studies have been carried out. All diimido-bridged complexes show two closely spaced oxidative processes at low temperature indicative of weak electronic communication. The reductive chemistry of the para-phenylene bridged complexes is different from other diimido complexes, displaying two closely spaced reductive processes. Spectroelectrochemical studies have also been carried out on N–X–N = p-NC6H4N, oxidation at +1.2 V leading to CO loss. In order to gain further insight into the nature of the electronic communication between metal centres density functional calculations were carried out and were generally in agreement with the electrochemical results, suggesting that there is at best a weak interaction between the metal centres in these π-conjugated diimido-bridged complexes.


References

  1. M. D. Ward, Chem. Soc. Rev., 1995, 121 RSC.
  2. C. Creutz, Prog. Inorg. Chem., 1983, 30, 1 CAS.
  3. W. Weng, T. Bartik and J. A. Gladysz, Angew. Chem., Int. Ed. Engl., 1994, 33, 2199 CrossRef; M. Brady, W. Weng and J. A. Gladysz, J. Chem. Soc., Chem. Commun., 1994, 2655 RSC.
  4. F. Coat and C. Lapinte, Organometallics, 1996, 15, 477 CrossRef CAS and refs. therein.
  5. W. A. Nugent and J. M. Mayer, Metal–Ligand Multiple Bonds, Wiley Interscience, New York, 1988 Search PubMed.
  6. T. P. Pollagi, S. J. Geib and M. D. Hopkins, J. Am. Chem. Soc., 1994, 116, 6051 CrossRef CAS; H. A. Brison, T. P. Pollagi, T. C. Stoner, S. J. Geib and M. D. Hopkins, Chem. Commun., 1997, 1263 RSC; B. E. Woodworth, P. S. White and J. S. Templeton, J. Am. Chem. Soc., 1997, 119, 828 CrossRef CAS; B. E. Woodworth and J. L. Templeton, J. Am. Chem. Soc., 1996, 118, 7418 CrossRef CAS; N. A. Ustynyuk, V. N. Vinogradova, V. G. Andrianov and Yu. T. Struchkov, J. Organomet. Chem., 1984, 268, 73 CrossRef CAS; K.-Y. Shih, R. R. Schrock and J. Kempe, J. Am. Chem. Soc., 1994, 116, 8804 CrossRef CAS; S. A. Krouse and R. R. Schrock, J. Organomet. Chem., 1988, 335, 257 CrossRef CAS.
  7. E. O. Fischer, D. Wittmann, D. Himmelreich and D. Neugebauer, Angew. Chem., Int. Ed. Engl., 1982, 21, 454 CrossRef; G. Jia, W. F. Wu, R. C. Y. Yeung and H. P. Xia, J. Organomet. Chem., 1997, 539, 53 CrossRef CAS; A. Rabier, N. Lugan, R. Mathieu and G. L. Georoy, Organometallics, 1994, 13, 4676 CrossRef CAS; N. Le Narvor, L. Toupet and C. J. Lapinte, J. Am. Chem. Soc., 1995, 117, 7129 CrossRef; H. Werner, T. Rappert and J. Wolf, Isr. J. Chem., 1990, 30, 377 CAS; D. Unseld, V. V. Krivykh, K. Heinze, F. Wild, G. Artus, H. Schmalle and H. Berke, Organometallics, 1999, 18, 1525 CrossRef CAS; R. S. Iyer and J. P. Selegue, J. Am. Chem. Soc., 1987, 109, 910 CrossRef CAS; R. L. Beddoes, C. Bitcon, A. Ricalton and M. W. Whitley, J. Organomet. Chem., 1989, 367, C21 CrossRef CAS; R. L. Beddoes, C. Bitcon, R. W. Grime, A. Ricalton and M. W. Whitley, J. Chem. Soc., Dalton Trans., 1995, 2873 RSC; M. I. Bruce, M. P. Cifuentes, M. R. Snow and R. T. Tiekink, J. Organomet. Chem., 1989, 359, 379 CrossRef CAS; C. Löwe, H.-U. Hund and H. Berke, J. Organomet. Chem., 1989, 372, 295 CrossRef CAS.
  8. D. E. Wigley, Prog. Inorg. Chem., 1994, 42, 239 CAS.
  9. G. Hogarth, R. L. Mallors and T. Norman, J. Chem. Soc., Chem. Commun., 1993, 1721 RSC.
  10. M. Liang and E. A. Maatta, Inorg. Chem., 1992, 31, 953 CrossRef CAS.
  11. W. Clegg, R. J. Errington, D. C. R. Hockless, J. M. Kirk and C. Redshaw, Polyhedron, 1992, 11, 381 CrossRef CAS.
  12. E. A. Maatta and D. D. Devore, Angew. Chem., Int. Ed. Engl., 1988, 27, 569 CrossRef; J. L. Stark, A. L. Rheingold and E. A. Maatta, J. Chem. Soc., Chem. Commun., 1995, 1165 RSC.
  13. W. Clegg, R. J. Errington, K. A. Fraser, S. A. Holmes and A. Schäfer, J. Chem. Soc., Chem. Commun., 1995, 455 RSC.
  14. G. Hogarth, T. Norman and S. P. Redmond, Polyhedron, 1999, 18, 1221 CrossRef CAS.
  15. E. A. Maatta and C. Kim, Inorg. Chem., 1989, 28, 624 CrossRef.
  16. G. Hogarth and S. P. Redmond, unpublished results.
  17. A. Antiñolo, F. Carrillo-Hermosilla, A. Otero, M. Fajardo, A. Garcés, P. Gómez-Sal, C. López-Mardomingo, A. Martín and C. Miranda, J. Chem. Soc., Dalton Trans., 1998, 59 RSC.
  18. D. E. Wheeler, J.-F. Wu and E. A. Maatta, Polyhedron, 1998, 17, 969 CrossRef CAS.
  19. R. K. Rosen, R. A. Anderson and N. M. Edelstein, J. Am. Chem. Soc., 1990, 112, 4588 CrossRef CAS.
  20. Y.-W. Ge, Y. Ye and P. R. Sharp, J. Am. Chem. Soc., 1994, 116, 8384 CrossRef CAS.
  21. P. R. Sharp, Organometallics, 1984, 3, 1217 CrossRef CAS.
  22. (a) F.-M. Su, J. C. Bryan, S. Jang and J. M. Mayer, Polyhedron, 1989, 8, 1261 CrossRef CAS; (b) K. A. Hall and J. M. Mayer, J. Am. Chem. Soc., 1992, 114, 10402 CrossRef CAS; (c) J. C. Bryan, S. J. Geib, A. L. Rheingold and J. M. Mayer, J. Am. Chem. Soc., 1987, 109, 2826 CrossRef CAS.
  23. A. P. Melissaris and M. H. Litt, J. Org. Chem., 1994, 59, 5918.
  24. S. Takahashi, Y. Kuroyama, K. Sonogashira and N. Hagirara, Synthesis, 1974, 424 CrossRef CAS.
  25. H. Eckert and B. Forster, Angew. Chem., Int. Ed. Engl., 1987, 26, 894 CrossRef.
  26. H. Vittenet, Bull. Soc. Chim. Fr., 1899, 3, 956 Search PubMed.
  27. P. E. Fanta, Synthesis, 1974, 9 CrossRef CAS; H. Tanaka, S. Sumida, N. Kobayashi, N. Komatsu and S. Torii, Inorg. Chim. Acta, 1994, 222, 323 CrossRef CAS.
  28. M. P. Y. Yu, K.-K. Cheung and A. Mayr, J. Chem. Soc., Dalton Trans., 1998, 2373 RSC.
  29. N. Kaltsoyannis and P. Mountford, J. Chem. Soc., Dalton Trans., 1999, 781 RSC and refs. therein.
  30. D. C. Bradley, M. B. Hursthouse, K. M. A. Malik, A. J. Nielson and R. L. Short, J. Chem. Soc., Dalton Trans., 1983, 2651 RSC.
  31. T. Ziegler and A. Rauk, Theor. Chim. Acta, 1977, 46, 1 CrossRef CAS.
  32. T. Ziegler and A. Rauk, Inorg. Chem., 1979, 18, 1558 CrossRef CAS.
  33. P. D. Lyne and D. M. P. Mingos, J. Chem. Soc., Dalton Trans., 1995, 1635 RSC.
  34. H. Taube and D. E. Richardson, Inorg. Chem., 1981, 20, 1278 CrossRef CAS.
  35. J. E. McGrady, T. Lovell and R. Stranger, Inorg. Chem., 1997, 36, 3242 CrossRef CAS.
  36. J. C. Bryan and J. M. Mayer, J. Am. Chem. Soc., 1990, 112, 2298 CrossRef CAS.
  37. S. Cenini, M. Pizzotti, F. Porta and G. La Monica, J. Organomet. Chem., 1975, 88, 237 CrossRef CAS.
  38. J. Trotter, Acta Crystallogr., 1961, 14, 1135 CrossRef CAS.
  39. J. Almlö, Chem. Phys., 1974, 6, 135 CrossRef; O. Bastiansen and M. Traettenberg, Tetrahedron, 1962, 17, 147 CrossRef CAS.
  40. J. L. Courtneidge, A. G. Davies, T. Clark and D. Wilhelm, J. Chem. Soc., Perkin Trans. 2, 1984, 1197 RSC.
  41. J. B. Flanagan, S. Margal, A. J. Bond and F. C. Anson, J. Am. Chem. Soc., 1978, 100, 4248 CrossRef CAS.
  42. S. L. W. McWhinnie, C. J. Jones, J. A. McCleverty, D. Collison and F. E. Mabbs, J. Chem. Soc., Chem. Commun., 1990, 940 RSC.
  43. J. A. McCleverty, Chem. Soc. Rev., 1983, 12, 331 RSC; G. Denti, C. J. Jones, J. A. McCleverty, B. D. Neaves and S. J. Reynolds, J. Chem. Soc., Chem. Commun., 1983, 474 RSC.
  44. N. AlObaidi, D. Clague, M. Chaudhury, C. J. Jones, J. A. McCleverty, J. C. Pearson and S. S. Salam, J. Chem. Soc., Dalton Trans., 1987, 1733 RSC; T. E. Berridge, F. S. McQuillan, H. Chen, T. A. Hamor and C. J. Jones, Inorg. Chem., 1998, 37, 4959 CrossRef CAS.
  45. J. A. Thomas, C. J. Jones, J. A. McCleverty, D. Collison, F. E. Mabbs, C. J. Harding and M. G. Hutchings, J. Chem. Soc., Chem. Commun., 1992, 1796 RSC.
  46. R. J. H. Clark and D. G. Humphrey, Inorg. Chem., 1996, 35, 2053 CrossRef CAS.
  47. S. P. Best, S. A. Ciniawsky and D. G. Humphrey, J. Chem. Soc., Dalton Trans., 1996, 2945 RSC.
  48. G. te Velde and E. J. Baerends, J. Comput. Phys., 1992, 99, 84 CrossRef CAS.
  49. ADF {2.3}, Department of Theoretical Chemistry, Vrije Universiteit, Amsterdam, 1997.
  50. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  51. For details of both MOLDEN and ADFrom, the reader is directed to http://www.caos.kun.nl/~schaft/molden/molden.html.
  52. G. M. Sheldrick, SHELXTL, University of Göttingen, 1985.
  53. G. M. Sheldrick, SHELXTL PLUS, Program package for structure solution and renement, version 4.2, Siemens Analytical Instruments Inc., Madison, WI, 1990.