Potentiometric and NMR studies on palladium(II) complexes of oligoglycines and related ligands with non-co-ordinating side chains

(Note: The full text of this document is currently only available in the PDF Version )

Csaba Gábor Ágoston, Teresa Kowalik Jankowska and Imre Sóvágó


Abstract

Palladium(II) complexes of peptides including Gly-Gly, Gly-Ala, Ala-Gly, Gly-Phe, Phe-Gly, triglycine, Gly-Gly-Ala and tetraglycine were studied by potentiometric and NMR spectroscopic methods. It was found that the reaction of free palladium(II) ion with dipeptides is almost complete below pH 2, therefore pH-metry can not be directly used for stability constant determinations. High excess of chloride ions (0.1 mol dm–3) was used to shift complex formation between [PdCl4]2– and peptides into the measurable pH range. The formation of the species [PdL(Cl)], [PdLH–1Cl] and [PdLH–2] with (NH2,N,CO2) co-ordination was detected with all dipeptides in equimolar solutions. Bis complexes were formed in the presence of an excess of ligand, but their stoichiometry varied as a function of the amino acid sequences of the peptides. In the case of dipeptides with C-terminal Gly residues (X-Gly) the species [PdL2H–2]2– with 4N co-ordination of two bidentate peptide molecules was formed by the physiological pH, while the stoichiometry of the bis complexes of dipeptides with non-co-ordinating side chains at the C termini (Gly-X) corresponds to [PdL2H–1] containing both tridentate and monodentate peptide ligands. Equimolar solutions of palladium(II) and tripeptides are characterized by the formation of the species [PdLH–2] with (NH2,N,N,CO2) co-ordination, while [PdL2H–2]2– containing two bidentate ligands is the main species in the presence of an excess of tripeptides.


References

  1. I. Sóvágó, in Biocoordination Chemistry, ed. K. Burger, Ellis Horwood, New York, 1990 Search PubMed.
  2. Handbook of Metal-Ligand Interactions in Biological Fluids, ed. G. Berthon, Marcel Dekker, New York, 1995, vol. I, pp. 620, 636, 648, 657 Search PubMed.
  3. H. Sigel and R. B. Martin, Chem. Rev., 1982, 82, 385 CrossRef CAS.
  4. E. W. Wilson, Jr. and R. B. Martin, Inorg. Chem., 1970, 9, 528 CrossRef.
  5. E. W. Wilson, Jr. and R. B. Martin, Inorg. Chem., 1971, 10, 1197 CrossRef.
  6. T. P. Pitner, E. W. Wilson, Jr. and R. B. Martin, Inorg. Chem., 1972, 11, 738 CrossRef CAS.
  7. L. E. Nance, A. F. Schreiner and H. G. Frye, Bioinorg. Chem., 1974, 3, 135 CrossRef CAS.
  8. H. Kozlowski and B. Jezowska-Trzebiatowska, Chem. Phys. Lett., 1976, 42, 246 CrossRef CAS.
  9. H. Kozlowski, G. Formicka-Kozlowska and B. Jezowska-Trzebiatowska, Org. Magn. Reson., 1977, 10, 146 Search PubMed.
  10. H. Kozlowski and M. Jezowska, Chem. Phys. Lett., 1977, 47, 452 CrossRef CAS.
  11. H. Kozlowski, Inorg. Chim. Acta, 1978, 31, 135 CrossRef CAS.
  12. H. Kozlowski, M. Jezowska and H. Szyszuk, J. Mol. Struct., 1978, 50, 73 CrossRef CAS.
  13. H. Kozlowski and Z. Siatecki, Chem. Phys. Lett., 1978, 54, 498 CrossRef CAS.
  14. E. Matczak-Jon, B. Jezowska-Trzebiatowska and H. Kozlowski, J. Inorg. Biochem., 1980, 12, 143 CrossRef CAS.
  15. M. Sabat, K. A. Satyshur and M. Sundaralingam, J. Am. Chem. Soc., 1983, 105, 976 CrossRef CAS.
  16. V. Scheller-Krattiger, K. H. Scheller and R. B. Martin, Inorg. Chim. Acta, 1982, 59, 281 CrossRef CAS.
  17. S.-H. Kim and R. B. Martin, J. Am. Chem. Soc., 1984, 106, 1707 CrossRef CAS.
  18. L. D. Pettit and M. Bezer, Coord. Chem. Rev., 1985, 61, 97 CrossRef CAS.
  19. S. Kasselouri, A. Garoufis, M. Lamera-Hadjiliadis and N. Hadjiliadis, Coord. Chem. Rev., 1990, 104, 1 CrossRef CAS.
  20. T. G. Appleton, Coord. Chem. Rev., 1997, 166, 313 CrossRef CAS.
  21. B. Decock-Le Reverend and H. Kozlowski, J. Chim. Phys., 1985, 82, 883 CAS.
  22. M. Wienken, A. Kiss, I. Sóvágó, E. C. Fusch and B. Lippert, J. Chem. Soc., Dalton Trans., 1997, 563 RSC.
  23. D. L. Rabenstein, A. A. Isab and M. N. Shoukry, Inorg. Chem., 1982, 38, 3234 CrossRef.
  24. J.-P. Laussac, M. Pasdeloup and N. Hadjiliadis, J. Inorg. Biochem., 1987, 28, 227 CrossRef CAS.
  25. P. Tsiveriotis, N. Hadjiliadis and G. Stavropoulos, Inorg. Chim. Acta, 1997, 261, 83 CrossRef CAS.
  26. P. Tsiveriotis, N. Hadjiliadis and I. Sóvágó, J. Chem. Soc., Dalton Trans., 1997, 4267 RSC.
  27. I. Sóvágó, D. Sanna, A. Dessi, K. Várnagy and G. Micera, J. Inorg. Biochem., 1996, 63, 99 CrossRef CAS.
  28. E. Camacho Frias, H. Pitsch, K. J. Ly and C. Poitrenaud, Talanta, 1995, 42, 1675 CrossRef CAS.
  29. L. I. Elding, Inorg. Chim. Acta, 1972, 6, 647 CrossRef CAS.
  30. H. Irving, G. Miles and L. D. Pettit, Anal. Chim. Acta, 1967, 38, 475 CrossRef CAS.
  31. A. Gergely and I. Nagypál, J. Chem. Soc., Dalton Trans., 1977, 1104 RSC.
  32. L. Zékány and I. Nagypál, in Computational Methods for the Determination of Stability Constants, ed. D. Leggett, Plenum, New York, 1985 Search PubMed.
  33. E. Farkas and T. Kiss, Polyhedron, 1989, 8, 2463 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.