Dinuclear oxomolybdenum(V) complexes which show strong electrochemical interactions across bis-phenolate bridging ligands: a combined spectroelectrochemical and computational study

(Note: The full text of this document is currently only available in the PDF Version )

Nicholas C. Harden, Elizabeth R. Humphrey, John C. Jeffery, Siu-Ming Lee, Massimo Marcaccio, Jon A. McCleverty, Leigh H. Rees and Michael D. Ward


Abstract

A UV/VIS/NIR spectroelectrochemical study has been carried out on a series of dinuclear complexes of the type [{Mo(TpMe,Me)(O)Cl}2{µ-OO}], where ‘OO’ denotes a bis-phenolate bridging ligand and TpMe,Me is tris(3,5-dimethylpyrazolyl)hydroborate. The bridging ligands are 1,4-[O(C6H4)nO]2–(n = 1 1, 2 2, 3 3 or 4 4), 1,4-[O(C6H3Me2)2O]2– 5, 1,3-[O(C6H4)O]2– 6 and 1,4-[OC6H4XC6H4O]2– (X = CH2 7, S 8 or SO2 9). Thus 1–4 have oligophenylene spacers; in 5 the biphenyl bridge is twisted by the presence of the Me substituents, in contrast to 2 which has a normal biphenyl spacer; 6 has a meta-substituted phenylene bridge in contrast to the para-substituted analogue 1; and 7–9 have single-atom spacers between the two phenyl rings. All complexes undergo two one-electron oxidations and two one-electron reductions, apart from 6 whose oxidation is irreversible. The effects of the different spacer groups on the electrochemical interactions in the complexes were examined by voltammetric determination of the redox splittings, the thioether spacer of 8 proving particularly effective at transmitting electronic interactions compared to the SO2 bridge of 9. UV/VIS/NIR Spectroelectrochemical studies on the mono- and di-oxidised complexes showed the presence of intense, low-energy phenolate→MoVI charge-transfer bands; for example for [4]2+, λmax = 1033 nm (ε = 50 000 dm3 mol–1 cm–1). The assignments of these as LMCT transitions were confirmed by spectroelectrochemical studies on mononuclear model complexes [Mo(TpMe,Me)(O)Cl(OC6H4R)] (R = H 10 or OMe 11) and by molecular orbital (ZINDO) calculations. Experimental and computational evidence indicate that the large separation between the two oxidations of 1–4 is ascribable in part to a near-planar bridging ligand conformation. The reduced forms of 1 and 6 were also examined by spectroelectrochemistry; whereas [1] [MoIVMoV state] shows low-energy intervalence charge-transfer transitions across the para-substituted bridge, no such transitions are detectable across the meta-substituted bridge of [6].


References

  1. J. A. McCleverty and M. D. Ward, Acc. Chem. Res., 1998, 31, 842 CrossRef CAS.
  2. M. D. Ward, Chem. Soc. Rev., 1995, 121 RSC; Chem. Ind. (London), 1996, 568 Search PubMed.
  3. Some representative recent examples: J.-M. Tour, M. Kozaki and J. M. Seminario, J. Am. Chem. Soc., 1998, 120, 8486 Search PubMed; S. Anderson, R. T. Aplin, T. D. W. Claridge, T. Goodson, A. C. Maciel, G. Rumbles, J. F. Ryan and H. L. Anderson, J. Chem. Soc., Perkin Trans. 1, 1998, 2383 CrossRef CAS; A. P. H. J. Schenning, R. E. Martin, M. Ito, F. Diederich, C. Boudon, J.-P. Gisselbrecht and M. Gross, Chem. Commun., 1998, 1013 RSC; A. Harriman and R. Ziessel, Coord. Chem. Rev., 1998, 171, 331 RSC; I. Jestin, P. Frere, P. Blanchard and J. Roncali, Angew. Chem., Int. Ed. Engl., 1998, 37, 942 CrossRef; R. D. Adams, T. Barnard, A. Rawlett and J.-M. Tour, Eur. J. Inorg. Chem., 1998, 429 CrossRef CAS; S. N. Yaliraki and M. A. Ratner, J. Chem. Phys., 1998, 109, 5036 CrossRef CAS; B. W. Jiang, S. W. Yang, S. L. Bailey, L. G. Hermans, R. A. Niver, M. A. Bolcar and W. E. Jones, Coord. Chem. Rev., 1998, 171, 365 CrossRef CAS; L. Jaquinod, O. Siri, R. G. Khoury and K. M. Smith, Chem. Commun., 1998, 1261 CrossRef CAS.
  4. V. A. Ung, D. A. Bardwell, J. C. Jeffery, J. P. Maher, J. A. McCleverty, M. D. Ward and A. Williamson, Inorg. Chem., 1996, 35, 5290 CrossRef.
  5. V. A. Ung, A. M. W. Cargill Thompson, D. A. Bardwell, D. Gatteschi, J. C. Jeffery, J. A. McCleverty, F. Totti and M. D. Ward, Inorg. Chem., 1997, 36, 3447 CrossRef.
  6. W. E. Cleland, Jr., K. M. Barhhart, K. Yamanouchi, D. Collison, F. E. Mabbs, R. B. Ortega and J. H. Enemark, Inorg. Chem., 1987, 26, 1017 CrossRef.
  7. W. Bruns, W. Kaim, E. Waldhör and M. Krejcik, Inorg. Chem., 1995, 34, 663 CrossRef CAS; M. Ketterle, J. Fiedler and W. Kaim, Chem. Commun., 1998, 1701 RSC.
  8. A. Wlodarczyk, G. A. Doyle, J. P. Maher, J. A. McCleverty and M. D. Ward, Chem. Commun., 1997, 769 RSC.
  9. K. Takahashi, A. Gunji, K. Yamagi and M. Mikimn, J. Org. Chem., 1996, 61, 4784 CrossRef CAS; K. Takahashi, T. Suzuki, K. Akiyama, Y. Ikegami and Y. Fukazawa, J. Am. Chem. Soc., 1991, 113, 4576 CrossRef CAS.
  10. W. J. Detroit and H. Hart, J. Am. Chem. Soc, 1952, 74, 5215 CrossRef CAS; O. B. Lantratova, A. I. Prokof'ev, I. V. Khudyakov, V. A. Kuzmin and I. F. Pokrovskaya, Nouv. J. Chim., 1982, 6, 365 Search PubMed.
  11. R. West, J. A. Jorgensen, K. L. Stearley and J. C. Calabrese, J. Chem. Soc., Chem. Commun., 1991, 1234 RSC; P. Boldt, D. Bruhnke, F. Gerson, M. Scholz, P. G. Jones and F. Bär, Helv. Chim. Acta, 1993, 76, 1739 CrossRef CAS.
  12. A. Rebmann, J. Zhou, P. Schuler, H. B. Stegmann and A. Rieker, J. Chem. Res. (M), 1996, 1765 Search PubMed.
  13. S.-M. Lee, R. Kowallick, M. Marcaccio, J. A. McCleverty and M. D. Ward, J. Chem. Soc., Dalton Trans., 1998, 3443 RSC.
  14. S.-M. Lee, M. Marcaccio, J. A. McCleverty and M. D. Ward, Chem. Mater., 1998, 10, 3272 CrossRef CAS.
  15. A. M. Barthram, R. L. Cleary, R. Kowallick and M. D. Ward, Chem. Commun., 1998, 2695 RSC.
  16. A. M. Barthram, R. L. Cleary, J. C. Jeffery, S. M. Couchman and M. D. Ward, Inorg. Chim. Acta, 1998, 267, 1 CrossRef CAS; L. F. Joulié, E. Schatz, M. D. Ward, F. Weber and L. J. Yellowlees, J. Chem. Soc., Dalton Trans., 1994, 799 RSC.
  17. T. E. Keyes, R. J. Forster, R. M. Jayaweera, C. G. Coates, J. J. McGarvey and J. G. Vos, Inorg. Chem., 1998, 37, 5925 CrossRef CAS.
  18. V. A. Ung, S. M. Couchman, J. C. Jeffery, J. A. McCleverty, M. D. Ward, F. Totti and D. Gatteschi, Inorg. Chem., 1999, 38, 365 CrossRef.
  19. S. M. Charsley, C. J. Jones, J. A. McCleverty, B. D. Neaves and S. J. Reynolds, J. Chem. Soc., Dalton Trans., 1998, 301 RSC.
  20. H. Fischer, G. Tom and H. Taube, J. Am. Chem. Soc., 1976, 98, 5512 CrossRef CAS.
  21. I. de S. Moreira and D. W. Franco, Inorg. Chem., 1994, 33, 1607 CrossRef; J. Chem. Soc., Chem. Commun., 1992, 450 Search PubMed.
  22. D. A. Bardwell, D. Black, J. C. Jeffery, E. Schatz and M. D. Ward, J. Chem. Soc., Dalton Trans., 1993, 2321 RSC; G. K. Lahiri, S. Bhattacharya, B. K. Ghosh and A. Chakravorty, Inorg. Chem., 1987, 26, 4324 CrossRef CAS.
  23. U. T. Mueller-Westerhof, B. Vance and D. I. Yoon, Tetrahedron, 1991, 47, 909 CrossRef CAS; F. Bigoli, P. Deplano, M. L. Mercuri, M. A. Pellinghelli, G. Pintus, E. F. Trogu, G. Zonnedda, H. H. Wang and J. M. Williams, Inorg. Chim. Acta, 1998, 273, 175 CrossRef CAS; H. Shiozaki, H. Kakazumi, Y. Nakado and T. Kitao, Chem. Lett., 1987, 2393 CAS; J. A. McCleverty, Prog. Inorg. Chem., 1968, 1049.
  24. J. Mayer and R. Krasiunkianis, J. Chem. Soc., Faraday Trans., 1991, 2943 RSC; P. S. Rao and E. Hayon, J. Phys. Chem., 1973, 77, 2274 CrossRef CAS; R. H. Schuler, G. N. R. Tripathi, M. F. Prebenda and D. M. Chipman, J. Phys. Chem., 1983, 87, 5357 CrossRef CAS.
  25. E. A. Braude, J. Chem. Soc., 1945, 490 RSC; A. Kuboyama, S. Matsuzaki, H. Takagi and H. Arano, Bull. Chem. Soc. Jpn., 1974, 47, 1604 CAS.
  26. V. J. Eaton and D. Steele, J. Chem. Soc., Faraday Trans. 2, 1973, 1601 RSC.
  27. M. Emmelius, G. Pawlowski and H. W. Vollmann, Angew. Chem., Int. Ed. Engl., 1989, 28, 1445 CrossRef; J. Fabian and R. Zahradnik, Angew. Chem., Int. Ed. Engl., 1989, 28, 677 CrossRef; J. Fabian, H. Nakazumi and M. Matsuoka, Chem. Rev., 1992, 92, 1197 CrossRef CAS.
  28. M. D. Ward, Chem. Ind., 1997, 640 CAS; K. Yoshida, N. Oga, M. Kadota, Y. Ogasahara and Y. Kubo, J. Chem. Soc., Chem. Commun., 1992, 1114 RSC; Y. Kubo, J. Chem. Soc., Perkin Trans. 1, 1994, 2521 RSC.
  29. ZINDO version 4.0.2 in the CAChe system, Oxford Molecular, Oxford, 1998.
  30. P. L. Jones, A. J. Amoroso, J. C. Jeffery, J. A. McCleverty, E. Psillakis, L. H. Rees and M. D. Ward, Inorg. Chem., 1997, 36, 10 CrossRef CAS.
  31. SADABS, A program for absorption corrections using the Siemens SMART diffractometer system, G. M. Sheldrick, University of Göttingen, 1996.
  32. SHELXTL 5.03 program system, Siemens Analytical X-Ray Instruments, Madison, WI, 1995.
Click here to see how this site uses Cookies. View our privacy policy here.