Oxidation of N-benzylidene-2-hydroxyaniline by dioxygen catalysed by a dicobalt complex[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Shian Yuh Chang, Yee Hsing Cheng, Bing-Jium Uang and Cheu Pyeng Cheng


Abstract

The oxidation of N-benzylidene-2-hydroxyaniline and its related derivatives by O2 catalysed by [Co2L(µ-OH)] {H3L = 2,6-bis[(2-hydroxyphenyl)iminomethyl]-4-methylphenol} in DMF at 363 K was investigated. The oxidation products were the corresponding 2-substituted benzoxazoles. However, a side reaction leading to 2-aminophenoxazine-3-one via hydrolysis of the starting compound with water produced in the oxidation, followed by the oxidation of aminophenol, was established. If a dehydrating agent such as anhydrous Na2SO4 or 4 Å molecular sieves was present in the reaction mixture the isolated product yields were above 87%. The fact that the reaction rate of the oxidation process in the presence of a radical scavenger was similar to that without suggests that it was a non-radical process. The initial oxidation rates depended linearly on the concentration of catalyst. The rates also depended linearly on the concentration of the organic substrate N-benzylidene-2-hydroxyaniline and O2 pressure when these variables were small ([substrate] < 0.2 M, O2 pressure < 70 kPa). At high concentration of substrate and O2 pressure the rate showed saturation behavior. These kinetic data could be satisfactorily accounted for by a mechanism with initial co-ordination of substrate to [Co2L(µ-OH)], followed by the co-ordination of O2 to the catalyst, then the rate limiting step of oxidation of substrate. The formation of the adduct between N-benzylidene-2-hydroxyaniline and catalyst at 298 K was characterized by UV-Vis spectroscopy. The variation of the initial rates among the organic substrates could be explained by stereoelectronic effects. Moreover, the influence of acetic acid which slowed the initial rate of oxidation and weak base (2,6-di-tert-butylpyridine) which had little effect on the rate could also be satisfactorily accounted for based on the acid–base properties of the proposed reaction intermediates.


References

  1. M. D. Reddy, T. Punniyamurthy and J. Iqbal, Tetrahedron Lett., 1995, 31, 159 CrossRef CAS.
  2. C. C. Maikap, D. Guhathakurta and J. Iqbal, Synlett., 1995, 189 CrossRef.
  3. M. T. Reetz and K. Töllner, Tetrahedron Lett., 1995, 36, 9461 CrossRef CAS.
  4. C. Ercolani, A. M. Paoletti, G. Pennesi and G. Rossi, J. Chem. Soc., Dalton Trans., 1991, 1317 RSC.
  5. J. D. Koola and J. K. Kochi, J. Org. Chem., 1987, 52, 4545 CrossRef CAS.
  6. T. Okamoto and S. Oka, J. Org. Chem., 1984, 49, 1589 CrossRef CAS.
  7. B. S. Tovrog, S. E. Diamond and F. Mares, J. Am. Chem. Soc., 1979, 101, 270 CrossRef CAS; B. S. Tovrog, S. E. Diamond, F. Mares and A. Szalkiewicz, J. Am. Chem. Soc., 1981, 103, 3522 CrossRef CAS; S. E. Diamond, F. Mares, A. Szalkiewicz, D. A. Muccigrosso and J. P. Solar, J. Am. Chem. Soc., 1982, 104, 4266 CrossRef CAS.
  8. I. Sasaki, A. Chiaroni, A. Gaudemer, D. Pujol and C. Riche, Polyhedron, 1987, 6, 2103 CrossRef CAS.
  9. A. Zombeck, R. S. Drago, B. B. Gorden and J. H. Gaul, J. Am. Chem. Soc., 1981, 103, 7580 CrossRef CAS.
  10. M. Perrée-Fauvet and A. Gaudemer, J. Chem. Soc., Chem. Commun., 1981, 874 RSC.
  11. S. J. S. Kalra, J. Iqbal and T. Punniyamurthy, Tetrahedron Lett., 1994, 35, 4847 CrossRef CAS.
  12. L. I. Simandi, T. Barna, Z. Szeverenyi and S. Nemeth, Pure Appl. Chem., 1992, 64, 1511 CAS; Z. Szeverenyi, E. R. Milaeva and L. I. Simandi, J. Mol. Catal., 1991, 67, 251 CrossRef CAS; L. I. Simandi, S. Nemeth and N. Rumelis, J. Mol. Catal., 1987, 42, 357 CrossRef CAS.
  13. A. Nishinaga, T. Matsuura and S. Yamazaki, Tetrahedron Lett., 1988, 29, 4115 CrossRef CAS.
  14. A. K. Basak and A. E. Martell, Inorg. Chem., 1986, 25, 1182 CrossRef CAS.
  15. A. Nishinaga, T. Matsuura and S. Yamazaki, Chem. Lett., 1986, 505 CAS.
  16. P. Li and H. Alper, J. Mol. Catal., 1992, 72, 143 CrossRef CAS.
  17. T. Bamhaoud and J. Prandi, Chem. Commun., 1996, 1229 RSC.
  18. T. Punniyamurthy and J. Iqbal, Tetrahedron Lett., 1994, 35, 4003 CrossRef CAS.
  19. R. Boca, J. Mol. Catal., 1981, 12, 351 CrossRef CAS.
  20. J. G. D. Schulz and A. Onopchenko, J. Org. Chem., 1980, 45, 3716 CrossRef CAS.
  21. A. Ladenburg, Ber. Dtsch. Chem. Ges., 1875, 8, 677; 1877, 10, 1124; 1878, 11, 826 Search PubMed.
  22. D. W. Hein, R. J. Blheim and J. J. Leavitt, J. Am. Chem. Soc., 1957, 79, 427 CrossRef CAS.
  23. Y. Kanaoka, T. Hamad and O. Yonemitsu, Chem. Pharm. Bull., 1970, 18, 587 CAS.
  24. H. O. Hankovszky and K. Hideg, Tetrahedron Lett., 1965, 2365.
  25. M. Terashima, M. Ishii and Y. Kanaoka, Synthesis, 1982, 484 CrossRef CAS.
  26. R. M. Acheson, An Introduction to the Chemistry of Heterocyclic Compounds, 3rd edn., Wiley, New York, 1977, p. 353 Search PubMed.
  27. R. J. Perry, B. D. Wilson and R. J. Miller, J. Org. Chem., 1992, 56, 2883 CrossRef.
  28. K. Nakagawa, H. Onoue and J. Sugita, Chem. Pharm. Bull., 1964, 12, 1135 CAS.
  29. M. Yoshifuji, R. Nagase, T. Kawashima and N. Inamoto, Heterocycles, 1978, 26, 274.
  30. F. F. Stephens and J. D. Bower, J. Chem. Soc., 1949, 2971 RSC.
  31. F. F. Stephens and J. D. Bower, J. Chem. Soc., 1950, 1722 RSC.
  32. M. S. A. El-Meligy and S. A. Mohamed, J. Prakt. Chem., 1974, 316.
  33. G. Speier, J. Mol. Catal., 1987, 41, 253 CrossRef CAS.
  34. K. H. Grellmann and E. Tauer, J. Am. Chem. Soc., 1973, 95, 3104 CrossRef CAS.
  35. T. Kondo, S. Yang, K.-T. Huh, M. Kobayasi and M. Watanabe, Chem. Lett., 1991, 1275 CAS.
  36. Y. H. Hwang and C. P. Cheng, J. Chem. Soc., Chem. Commun., 1992, 317 RSC.
  37. Y. H. Hwang and C. P. Cheng, unpublished work.
  38. A. K. Basak and A. E. Martell, Inorg. Chem., 1986, 25, 1182 CrossRef CAS.
  39. E. C. Niederhoffer, H. H. Timmons and A. E. Martell, Chem. Rev., 1984, 84, 137 CrossRef CAS.
  40. I. Bertini, H. B. Gray, S. J. Lippard and J. S. Valentine, Bioinorganic Chemistry, University Science Books, California, 1994, ch. 5 Search PubMed.
  41. See, for example S. J. Dzugan and D. H. Busch, Inorg. Chem., 1990, 29, 2528 Search PubMed; K. A. Lance, K. A. Goldsby and D. H. Busch, Inorg. Chem., 1990, 29, 4537 CrossRef CAS.
  42. D. A. Skoog, D. M. West and F. J. Holler, Fundamentals of Analytical Chemistry, 7th edn., Saunders College Publishing, New York, 1996, Appendix 3 Search PubMed.
  43. S. A. VanSlyke and C. W. Tang, U.S. Pat., 4 539 507, 1985 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.