A five-coordinate, sixteen-electron manganese(I) complex [Mn(CO)3(S,S–C6H4)] stabilized by S,S π-donation from chelating [S,S–C6H4]2–

(Note: The full text of this document is currently only available in the PDF Version )

Chien-Ming Lee, Ging-Yi Lin, Chung-Hung Hsieh, Ching-Han Hu, Gene-Hsiang Lee, Shie-Ming Peng and Wen-Feng Liaw


Abstract

The five-coordinate, sixteen-electron manganese(I) complex [N(PPh3)2][Mn(CO)3(S,S–C6H4)] 1 was prepared from reaction of [N(PPh3)2][Mn(CO)3(NH,S–C6H4)] and 1,2-benzenedithiol via the hexacoordinate intermediate fac-[Mn(CO)3(S–C6H4SH)(NH2,S–C6H4)]. Alternatively, oxidative addition of 1,2-benzenedithiol to [Mn(CO)5], followed by a Lewis acid–base reaction, with evolution of H2 gas (identified by gas chromatography), led to formation of the coordinatively-unsaturated complex 1. In contrast, reaction of bis(2-pyridyl) disulfide and [N(PPh3)2][Mn(CO)5] afforded hexacoordinate fac-[N(PPh3)2][Mn(CO)3(S–C5H4–N)(S–C5H4N)] 2, with one anionic [S–C5H4N] ligand bound to MnI in a monodentate (S-bonded) manner and the other [S–C5H4–N] ligand bound in a bidentate manner (S,N-bonded). Complexes 1 and 2 have been characterized in solution by infrared spectroscopy and in the solid state by X-ray crystallography. The strong π-donating ability of the bidentate [S,S–C6H4]2– ligand stabilizes the unsaturated complex 1 which has short MnI–S bond lengths of 2.230(1) Å (average) as a result. The existence of one π and two σ bonds between the [Mn(CO)3]+ and [S,S–C6H4]2– fragments, based on qualitative frontier molecular orbital analysis, also indicates that the lone-pair electrons are delocalized around the sulfur-manganese-sulfur system stabilizing the five-coordinate complex 1. The IR carbonyl stretching frequencies and the MnI–S bond distances of complexes 1 and [N(PPh3)2][Mn(CO)3(NH,S–C6H4)] suggest that the relative π-donating ability of the bidentate ligands is [NH,S–C6H4]2– > [S,S–C6H4]2–. The Mulliken atomic charges derived from Hartree–Fock calculations roughly quantify the charge distribution in the complex [Mn(CO)3(NH,S–C6H4)] (δ(N) = –1.14; δ(S) = –0.43; δ(Mn) = 1.14), and supports the premise that the reactions of [Mn(CO)3(NH,S–C6H4)] with electrophiles (1,2-benzenedithiol, thiophene-2-thiol, 1,2-ethanedithiol) occur at the more electron-rich amide site, yielding charge-controlled, collision complexes.


References

  1. (a) M. S. Corraine and J. D. Atwood, Organometallics, 1991, 10, 2315 CrossRef CAS; (b) M. Tilset and V. D. Parker, J. Am. Chem. Soc., 1989, 111, 6711 CrossRef CAS; (c) C.-K. Lai, M. S. Corraine and J. D. Atwood, Organometallics, 1992, 11, 582 CrossRef CAS; (d) R. G. Pearson and P. E. Figdore, J. Am. Chem. Soc., 1980, 102, 1541 CrossRef CAS.
  2. (a) W.-F. Liaw, D.-S. Ou, Y.-S. Li, W.-Z. Lee, C.-Y. Chuang, Y.-P. Lee, G.-H. Lee and S.-M. Peng, Inorg. Chem., 1995, 34, 3747 CrossRef CAS; (b) W.-F. Liaw, C.-Y. Chuang, W.-Z. Lee, C.-K. Lee, G.-H. Lee and S.-M. Peng, Inorg. Chem., 1996, 35, 2530 CrossRef CAS; (c) W.-F. Liaw, W.-Z. Lee, C.-Y. Wang, G.-H. Lee and S.-M. Peng, Inorg. Chem., 1997, 36, 1253 CrossRef CAS.
  3. W.-F. Liaw, S.-J. Chiou, G.-H. Lee and S.-M. Peng, Inorg. Chem., 1998, 37, 1131 CrossRef CAS.
  4. W.-F. Liaw, C.-M. Lee, G.-H. Lee and S.-M. Peng, Inorg. Chem., 1998, 37, 6396 CrossRef CAS.
  5. (a) F. Hartl, A. Vlcek, Jr., L. A. deLearie and C. G. Pierpont, Inorg. Chem., 1990, 29, 1073 CrossRef CAS; (b) P. Jaitner, W. Huber, G. Huttner and O. Scheidsteger, J. Organomet. Chem., 1983, 259, C1 CrossRef CAS; (c) F. Hartl, D. J. Stufkens and A. Vlcek, Jr., Inorg. Chem., 1992, 31, 1687 CrossRef CAS.
  6. (a) D. J. Darensbourg, K. K. Klausmeyer, B. L. Mueller and J. H. Reibenspies, Angew. Chem., Int. Ed. Engl., 1992, 31, 1503 CrossRef; (b) D. J. Darensbourg, J. D. Draper and J. H. Reibenspies, Inorg. Chem., 1997, 36, 3648 CrossRef CAS; (c) D. J. Darensbourg, K. K. Klausmeyer and J. H. Reibenspies, Inorg. Chem., 1996, 35, 1535 CrossRef CAS; (d) D. J. Darensbourg, K. K. Klausmeyer and J. H. Reibenspies, Inorg. Chem., 1996, 35, 1529 CrossRef CAS; (e) D. Sellmann, M. Wille and F. Knoch, Inorg. Chem., 1993, 32, 2534 CrossRef CAS; (f) D. Sellmann and J. Schwarz, J. Organomet. Chem., 1983, 241, 343 CrossRef CAS; (g) D. Sellmann, W. Ludwig, G. Huttner and L. Zsolnai, J. Organomet. Chem., 1985, 294, 199 CrossRef CAS; (h) D. J. Darensbourg, K. K. Klausmeyer and J. H. Reibenspies, Inorg. Chem., 1995, 34, 4676 CrossRef CAS.
  7. W.-F. Liaw, C.-H. Chen, G.-H. Lee and S.-M. Peng, Organometallics, 1998, 17, 2370 CrossRef CAS.
  8. W.-F. Liaw, C.-Y. Ching, C.-K. Lee, G.-H. Lee and S.-M. Peng, J. Chin. Chem. Soc. (Taipei), 1996, 43, 427 CAS.
  9. (a) M. T. Ashby, Comments Inorg. Chem., 1990, 10, 297 CAS; (b) K. W. Penfield, R. R. Gay, R. S. Himmelwright, N. C. Eickman, V. A. Norris, H. C. Freeman and E. I. Solomon, J. Am. Chem. Soc., 1981, 103, 4382 CrossRef CAS; (c) D. Sellmann, M. Geck, F. Knoch, G. Ritter and J. Dengler, J. Am. Chem. Soc., 1991, 113, 3819 CrossRef CAS; (d) F. Hartl, D. J. Stufkens and A. Vlcek, Jr., Inorg. Chem., 1992, 31, 1687 CrossRef CAS.
  10. (a) S. G. Rosenfield, S. A. Swedberg, S. K. Arora and P. K. Mascharak, Inorg. Chem., 1986, 25, 2109 CrossRef CAS; (b) P. Mura, B. G. Olby and S. D. Robinson, J. Chem. Soc., Dalton Trans., 1985, 2101 RSC; (c) B. K. Santra, M. Menon, C. K. Pal and G. K. Lahiri, J. Chem. Soc., Dalton Trans., 1997, 1387 RSC; (d) I. P. Evans and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1974, 946 RSC; (e) A. J. Deeming, M. Karim and N. Powell, J. Chem. Soc., Dalton Trans., 1990, 2321 RSC; (f) D. J. Rose, Y.-D. Chang, Q. Chen and J. Zubieta, Inorg. Chem., 1994, 33, 5167 CrossRef CAS; (g) S. Kitagawa, M. Munakata, H. Shimono, S. Matsuyama and H. Masuda, J. Chem. Soc., Dalton Trans., 1990, 2105 RSC; (h) R. Castro, M. L. Durán, J. A. Garcia-Vázquez, J. Romero, A. Sousa, A. Castiñeiras, W. Hiller and J. Strähle, J. Chem. Soc., Dalton Trans., 1990, 531 RSC.
  11. (a) M. A. Walters, J. C. Dewan, C. Min and S. Pinto, Inorg. Chem., 1991, 30, 2656 CrossRef CAS; (b) D. Sellmann, W. Soglowek, F. Knoch and M. Moll, Angew. Chem., Int. Ed. Engl., 1989, 28, 1271 CrossRef; (c) T.-A. Okamura, N. Ueyama, A. Nakamura, E. W. Ainscough, A. M. Brodie and J. M. Waters, J. Chem. Soc., Chem. Commun., 1993, 1658 RSC; (d) N. Ueyama, N. Nishikawa, Y. Yamada, T. Okamura, S. Oka, H. Sakurai and A. Nakamura, Inorg. Chem., 1998, 37, 2415 CrossRef CAS.
  12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94 Revision E.3, Gaussian, Inc., Pittsburgh PA, 1995.
  13. D. J. Darensbourg, J. D. Draper and J. H. Reibenspies, Inorg. Chem., 1997, 36, 3648 CrossRef CAS.
  14. K. Inkrott, G. Goetze and S. G. Shore, J. Organomet. Chem., 1978, 154, 337 CrossRef CAS.
  15. A. C. T. North, D. C. Philips and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351 CrossRef.
  16. E. J. Gabe, Y. LePage, J. P. Chrarland, F. L. Lee and P. S. White, J. Appl. Crystallogr., 1989, 22, 384 CrossRef.
  17. International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.2B Search PubMed.
  18. G. M. Sheldrick, SADABS, Siemens Area Detector Absorption Correction Program, University of Göttingen, 1996.
  19. G. M. Sheldrick, SHELXTL, Program for Crystal Structure Determination, Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1994.
Click here to see how this site uses Cookies. View our privacy policy here.