Synthesis, crystal structures and properties of copper(II) complexes of Schiff base derivatives containing imidazole and β-alanine groups

(Note: The full text of this document is currently only available in the PDF Version )

La-Sheng Long, Shi-Ping Yang, Ye-Xiang Tong, Zong-Wan Mao, Xiao-Ming Chen and Liang-Nian Ji


Abstract

Four copper(II) complexes with Schiff base ligands N-[(5-methylimidazol-4-yl)methylene]-β-alanine (HL1) and N-[(1-methylimidazol-2-yl)methylene]-β-alanine (HL2) and their reduced forms N-[(5-methylimidazol-4-yl)methyl]-β-alanine (HL3) and N,N-bis[(5-methylimidazol-4-yl)methyl]-β-alanine (HL4) have been synthesized. The crystal structures of [CuL1(H2O)(ClO4)] 1, [CuL2(H2O)(ClO4)] 2, [CuL3(Py)(ClO4)] 3 and [Cu2(L4)2][ClO4]2·2H2O 4 have been determined. Complexes 1 and 2 are structurally very similar, the copper(II) atom being tridentately chelated by the Schiff base using one carboxy oxygen atom and two nitrogen atoms at the equatorial positions, with the fourth equatorial position being occupied by another carboxy oxygen atom from an adjacent Schiff base; one aqua ligand and one perchlorate oxygen atom ligate at the axial positions, resulting in an elongated octahedral geometry. Each carboxy group in 1 and 2 acts in the syn-anti mode and bridges two adjacent copper(II) atoms via two equatorial positions, resulting in one-dimensional helical (Cu–O–C–O–Cu)n chains. In 3 the copper(II) atom is ligated by two nitrogen atoms, one carboxy oxygen atom from an L3 ligand and another nitrogen atom from pyridine at the equatorial position; the axial positions are occupied by one perchlorato oxygen atom and one carboxy oxygen atom from another L3 ligand, tridentately chelating an adjacent copper(II) atom, resulting in an elongated octahedral geometry. Complex 4 contains a dimeric cation with two very similar square-pyramidally co-ordinated copper(II) atoms. Each L4 ligand chelates a copper(II) atom in a tetradentate mode with the three nitrogen atoms occupying the equatorial positions and the carboxy oxygen atom the apical position. The fourth equatorial position is taken by a carboxy oxygen atom from another L4 ligand chelating another copper(II) atom, resulting in a bis(carboxylato-O)-bridged dimeric structure. The electronic and EPR spectra and redox properties of 1–4 are also discussed.


References

  1. D. E. Metzler, M. Ikawa and E. E. Snell, J. Am. Chem. Soc., 1954, 76, 648 CrossRef CAS; H. R. Mohler and E. H. Corders, Biological Chemistry, Harper and Row, New York, 1971, p. 393 Search PubMed; L. Casella, M. Gullotti and G. Pachioni, J. Am. Chem. Soc., 1982, 104, 2386; 1983, 105, 803 Search PubMed; L. Casella and M. Gullotti, Inorg. Chem., 1981, 20, 1036 Search PubMed.
  2. R. D. Gillard and R. Wootton, J. Chem. Soc. B, 1970, 364 RSC.
  3. L. Stryer, Biochemistry, W. H. Freeman and Company, San Francisco, 1981, pp. 409–411 Search PubMed.
  4. B. M. Guirard and E. E. Snell, Comprehensive Biochemistry, eds. M. Florkin and E. H. Stotz, Elsevier, Amsterdam, 1981, pp. 138–199 Search PubMed.
  5. H. Mehansho and L. M. Henderson, J. Biol. Chem., 1980, 255, 11901 CAS.
  6. M. R. Wagner and F. A. Walker, Inorg. Chem., 1983, 22, 3021 CrossRef CAS.
  7. T. Ueki, T. Ashida, Y. Sasada and M. Kakudo, Acta Crystallogr., Sect. B, 1969, 25, 328 CrossRef CAS; Acta Crystallogr., 1967, 22, 872 Search PubMed; F. Pavelcik, J. Kratsmar-Smogrovic, O. Svajlenova and J. Majer, J. Chem. Soc., Chem. Commun., 1981, 46, 3186 Search PubMed.
  8. G. Plesch, C. Friebel, O. Svajlenova and J. Kratsmar-Smogrovic, Inorg. Chim. Acta, 1987, 129, 81 CrossRef CAS.
  9. N. Arulsamy and P. Zacharias, Transition Met. Chem., 1991, 16, 255 CAS.
  10. L. Casella and M. Gullotti, Inorg. Chem., 1983, 22, 2259 CrossRef CAS.
  11. (a) G. Brookes and L. D. Pettit, J. Chem. Soc., Dalton Trans., 1977, 1918 RSC; (b) M. S. Nair, M. Santappa and P. Natarajan, ibid., 1980, 1312, 2138 Search PubMed; (c) T. Sakurai and A. Nakahara, Inorg. Chem., 1980, 19, 847 CrossRef CAS.
  12. R. P. Agarwal and D. D. Perrin, J. Chem. Soc., Dalton Trans., 1977, 53 RSC; S.-J. Lau and B. Sarkar, ibid., 1981, 491 Search PubMed.
  13. K. E. Voss, R. J. Angelici and R. A. Jacobson, Inorg. Chem., 1978, 17, 1922 CrossRef CAS.
  14. (a) L.-S. Long, X.-M. Chen and L.-N. Ji, Inorg. Chem. Commun., 1999, 2, 181 CrossRef CAS; (b) L.-S. Long, X.-M. Chen, X.-L. Yu, Z.-Y. Zhou and L.-N. Ji, Polyhedron, 1999, in the press Search PubMed; (c) L.-S. Long, Y.-X. Tong, X.-L. Yu, X.-M. Chen and L.-N. Ji, Transition Met. Chem., 1999, 24, 49 CrossRef CAS; (d) L.-S. Long, Y.-X. Tong, S.-P. Yang, X.-M. Chen and L.-N. Ji, Transition Met. Chem., 1999, in the press Search PubMed.
  15. G. M. Sheldrick, SHELXS 97, Program for X-Ray Crystal Structure Determination, University of Göttingen, 1997.
  16. G. M. Sheldrick, SHELXL 97, Program for X-Ray Crystal Structure Refinement, University of Göttingen, 1997.
  17. H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876 CrossRef.
  18. International Tables for Crystallography, Kluwer, Dordrecht, 1992, vol. C, Tables 4.2.6.8 and 6.1.1.4 Search PubMed.
  19. G. M. Sheldrick, SHELXTL PC, Program Package for X-Ray Crystal Structure Determination, Siemens Analytical X-Ray Intruments, Inc., Karlsruhe, 1990.
  20. E. Colacio, J.-M. D.-Vera, J.-P. Costes, R. Kivekas, J.-P. Laurent, J. Ruiz and M. Sundberg, Inorg. Chem., 1992, 31, 774 CrossRef CAS.
  21. X.-M. Chen, Z.-T. Xu and X.-C. Huang, J. Chem. Soc., Dalton Trans., 1994, 2331 RSC; X.-M. Chen, B.-H. Ye, X.-C. Huang and Z.-T. Xu, ibid., 1996, 3465 Search PubMed.
  22. J. H. Bradbury and J. A. Carver, Biochemistry, 1984, 23, 4905 CrossRef CAS; M. F. Perutz, A. M. Gronenborn, G. M. Clore, J. H. Fogg and D. T.-B. Shih, J. Mol. Biol., 1985, 183, 491 CAS.
  23. L. K. Koh, J. D. Ranford, W. T. Robinson, J. O. Svensson, A. L. C. Tan and D. Wu, Inorg. Chem., 1996, 35, 6466 CrossRef CAS.
  24. N. J. Brown and L. M. Trefonas, Inorg. Chem., 1973, 12, 1730 CrossRef; B. Chirari, W. E. Hatfield, O. Piovesana, T. Tarantelli, L. W. ter Haar and P. F. Zanazzi, Inorg. Chem., 1983, 22, 1468 CrossRef CAS; B. Chirari, J. H. Helms, O. Piovesana, T. Tarantelli and P. F. Zanazzi, Inorg. Chem., 1986, 25, 870, 2408.
  25. S. J. Lippard, Angew. Chem., Int. Ed. Engl., 1988, 27, 344 CrossRef; D. M. Jr. Kurtz, Chem. Rev., 1990, 90, 585 CrossRef CAS; L. Jr. Que and A. E. True, Prog. Inorg. Chem., 1990, 38, 9; S. Yan, D. D. Cox, L. L. Pearce, C. Juarez-Garcia, L. Jr. Que, J. H. Zhang and C. J. O'Connor, Inorg. Chem., 1989, 28, 2507 CrossRef; R. E. Norman, S. Yan, L. Jr. Que, G. Backes, J. Ling, J. Sandersloehr, J. H. Zhang and C. J. O'Connor, J. Am. Chem. Soc., 1990, 112, 1554 CrossRef CAS; S. Menage and L. Jr. Que, New J. Chem., 1991, 15, 431 Search PubMed; P. Chaudhuri, C. Stockheim, K. Wieghardt, W. Deck, R. Gregorzik, H. Vahrenkamp, B. Nuber and J. Weiss, Inorg. Chem., 1992, 31, 1451 CrossRef CAS; X.-M. Chen, X. Y. Tong and T. C. W. Mak, ibid., 1994, 33, 4568 Search PubMed.
  26. C.-C. Tang, D. Davalian, P. Huang and R. Breslow, Inorg. Chem., 1978, 100, 9318; F. Clifford, E. Counihan, W. Fitzgerald, K. Seff, C. Simmons, S. Tyagi and B. Hathaway, J. Chem. Soc., Chem. Commun., 1982, 196 RSC; K. R. Reddy and M. V. Rajasekharan, Polyhedron, 1994, 13, 765 CrossRef CAS.
  27. I. Bertini, L. Banci, M. Piccioli and C. Luchinat, Coord. Chem. Rev., 1990, 100, 67 CrossRef CAS.
  28. B. J. Hathaway and D. E. Billing, Coord. Chem. Rev., 1970, 5, 143 CrossRef CAS.
  29. J.-L. Pierre, P. Chautemps, S. Refaif, C. Beguin, A. El Marzouki, G. Serratice, E. Saint-Aman and P. Rey, J. Am. Chem. Soc., 1995, 117, 1965 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.